• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
    • 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于FCM-LSTM的光熱發電出力短期預測

    劉振路 郭軍紅 李薇 賈宏濤 陳卓

    劉振路, 郭軍紅, 李薇, 賈宏濤, 陳卓. 基于FCM-LSTM的光熱發電出力短期預測[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.02.24.001
    引用本文: 劉振路, 郭軍紅, 李薇, 賈宏濤, 陳卓. 基于FCM-LSTM的光熱發電出力短期預測[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2023.02.24.001
    LIU Zhenlu, GUO Junhong, LI Wei, JIA Hongtao, CHEN Zhuo. Short-term prediction of concentrating solar power based on FCM–LSTM[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.02.24.001
    Citation: LIU Zhenlu, GUO Junhong, LI Wei, JIA Hongtao, CHEN Zhuo. Short-term prediction of concentrating solar power based on FCM–LSTM[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2023.02.24.001

    基于FCM-LSTM的光熱發電出力短期預測

    doi: 10.13374/j.issn2095-9389.2023.02.24.001
    基金項目: 國家重點研發計劃資助項目(2018YFE0208400)
    詳細信息
      通訊作者:

      E-mail:925657837@qq.com

    • 中圖分類號: TK519

    Short-term prediction of concentrating solar power based on FCM–LSTM

    More Information
    • 摘要: 對光熱電站的出力進行短期預測,可以有效應對太陽能隨機性和波動性帶來的影響,為電網調度做好準備. 該文以青海某光熱電站為例,首先使用模糊C均值聚類算法對預處理后的實驗數據進行分類,然后通過分析不同聚類類型下出力和氣象數據中各因子間的關聯程度,充分挖掘出數據間的關系,確定不同類型預測模型的輸入變量,進而構建出不同類別下的長短期記憶神經網絡預測模型. 結果表明,與傳統長短期記憶神經網絡模型、BP神經網絡模型、支持向量機模型和隨機森林模型的預測結果相比,基于模糊C均值聚類的長短期記憶預測模型效果良好,大幅減少了預測誤差,驗證了該預測模型的有效性.

       

    • 圖  1  LSTM的cell示意圖

      Figure  1.  Cell diagram of LSTM

      圖  2  FCM–LSTM模型流程圖

      Figure  2.  Flowchart of the FCM–LSTM model

      圖  3  DBI、SC的變化趨勢

      Figure  3.  Trends of DBI and SC

      圖  4  不同類型下各因子間的相關性

      Figure  4.  Correlation between factors under different types

      圖  5  測試集隸屬度

      Figure  5.  Membership degree of the test set

      圖  6  五種模型的預測結果

      Figure  6.  Prediction results of the five models

      圖  7  五種模型的預測誤差

      Figure  7.  Prediction errors of the five models

      表  1  預測模型參數信息

      Table  1.   Parameters of the prediction models

      TypeInput dimensionBatch_sizeEpochsOptimizer
      20×33250Adadelta
      20×5128100Adadelta
      20×43250Adadelta
      下載: 導出CSV

      表  2  對比模型參數信息

      Table  2.   Parameters of the compared models

      ModelParameters
      Batch_sizeEpochsOptimizer
      LSTM16200Adam
      BP3220sgd
      ModelParameters
      Penalty coefficientKernel
      SVM1radial basis function
      ModelParameters
      n_estimatorsmax_depthmax_features
      RF3005sqrt
      下載: 導出CSV

      表  3  五種模型的評價指標

      Table  3.   Evaluation index of the five models

      ModelRMSEMAE
      FCM–LSTM1.85381.1638
      LSTM2.68641.5539
      BP2.89781.7713
      SVM3.30451.7898
      RF3.10631.9091
      下載: 導出CSV
    • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <table id="y4y0w"><option id="y4y0w"></option></table>
    • <li id="y4y0w"></li>
      <noscript id="y4y0w"></noscript>
      <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
      <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <menu id="y4y0w"></menu>
      <table id="y4y0w"><rt id="y4y0w"></rt></table>
    啪啪啪视频
  • [1] Li Y Y. Distribution of solar energy resources in China. Energy China, 1977(1): 47

    李益言. 我國太陽能資源的分布. 中國能源, 1977(1):47
    [2] Wang K, Huang J. Domestic and abroad research status and prospects of solar energy resource evaluation methods [J/OL]. Clim Change Res (2022-12-01) [2023-02-24]. http://kns.cnki.net/kcms/detail/11.5368.P.20221130.0847.001.html

    王科, 黃晶. 國內外太陽能資源評估方法研究現狀和展望[J/OL]. 氣候變化研究進展 (2022-12-01) [2023-02-24]. http://kns.cnki.net/kcms/detail/11.5368.P.20221130.0847.001.html
    [3] Li H W. Research on the current situation of solar thermal power generation technology and the existing problems of key equipment. Electron Test, 2020(2): 131 doi: 10.3969/j.issn.1000-8519.2020.02.051

    李煥偉. 太陽能光熱發電技術現狀極其關鍵設備存在問題探究. 電子測試, 2020(2):131 doi: 10.3969/j.issn.1000-8519.2020.02.051
    [4] Huang Y R, Hou Y Y, Gao Z H. The development status and prospect analysis of international concentrating solar power industry. Sci Technol Ind, 2014, 14(9): 54 doi: 10.3969/j.issn.1671-1807.2014.09.012

    黃裕榮, 侯元元, 高子涵. 國際太陽能光熱發電產業發展現狀及前景分析. 科技和產業, 2014, 14(9):54 doi: 10.3969/j.issn.1671-1807.2014.09.012
    [5] Niu Z Y, Li L J. Status and analysis of CSP demonstration projects. Energy Energy Conserv, 2020(12): 76 doi: 10.16643/j.cnki.14-1360/td.2020.12.031

    牛志愿, 李麗君. 太陽能熱發電示范項目現狀及分析. 能源與節能, 2020(12):76 doi: 10.16643/j.cnki.14-1360/td.2020.12.031
    [6] Li J J. Research on Output Prediction Model of Concentrating Solar Power Station Based on DBN–DNN Algorithm [Dissertation]. Lanzhou: Lanzhou University of Technology, 2020

    李錦鍵. 基于DBN–DNN算法的光熱儲能電站出力預測模型研究[學位論文]. 蘭州:蘭州理工大學, 2020
    [7] Zhang H B, Yang M Y. Ultra-short-term forecasting for photovoltaic power output based on least square support vector machine. Mod Electr Power, 2015, 32(1): 70 doi: 10.3969/j.issn.1007-2322.2015.01.012

    張華彬, 楊明玉. 基于最小二乘支持向量機的光伏出力超短期預測. 現代電力, 2015, 32(1):70 doi: 10.3969/j.issn.1007-2322.2015.01.012
    [8] Li G M, Zheng L N, Fan W, et al. Research on ultra-short term output forecasting of PV station based on BP neural network. Chin J Power Sources, 2021, 45(8): 1052 doi: 10.3969/j.issn.1002-087X.2021.08.025

    李光明, 鄭麗娜, 范威, 等. 基于神經網絡的光伏電站出力超短期預測研究. 電源技術, 2021, 45(8):1052 doi: 10.3969/j.issn.1002-087X.2021.08.025
    [9] Jiang T L, Xu Z M, Wang G. Research on short-term power forecasting model of solar-thermal power generation based on mobile ad hoc network. Turbine Technol, 2019, 61(2): 151 doi: 10.3969/j.issn.1001-5884.2019.02.018

    姜鐵騮, 徐志明, 王剛. 基于移動Ad Hoc網絡的太陽能光熱發電短期功率預測模型研究. 汽輪機技術, 2019, 61(2):151 doi: 10.3969/j.issn.1001-5884.2019.02.018
    [10] Wang Y, Li G J, Yue W H. Prediction model of photo-thermal power generation based on G (1, 1) optimization. MATEC Web Conf, 2018, 246: 02057 doi: 10.1051/matecconf/201824602057
    [11] Song S J, Li B H. Short-term forecasting method of photovoltaic power based on LSTM. Renew Energy Resour, 2021, 39(5): 594 doi: 10.3969/j.issn.1671-5292.2021.05.005

    宋紹劍, 李博涵. 基于LSTM網絡的光伏發電功率短期預測方法的研究. 可再生能源, 2021, 39(5):594 doi: 10.3969/j.issn.1671-5292.2021.05.005
    [12] Wang C Q, Chen X D, Cao H W, et al. Short term photovoltaic power prediction. J Liaoning Tech Univ (Nat Sci), 2023, 42(1): 99

    王琛淇, 陳曉東, 曹瀚文, 等. 短期光伏發電系統功率預測. 遼寧工程技術大學學報(自然科學版), 2023, 42(1):99
    [13] Li S S, Ma Z C, Zhang X Y, et al. Research on thermal power prediction of concentrating solar power station based on deep learning. Ind Instrum Autom, 2021(6): 58 doi: 10.3969/j.issn.1000-0682.2021.06.013

    李嵩山, 馬志程, 張曉英, 等. 基于深度學習的聚光太陽能電站熱功率預測研究. 工業儀表與自動化裝置, 2021(6):58 doi: 10.3969/j.issn.1000-0682.2021.06.013
    [14] Li Q, Gao C Y, Hu C X, et al. Short-term photovoltaic power generation prediction based onLong-short-term memory network and attention mechanism. Electr Autom, 2020, 42(5): 19 doi: 10.3969/j.issn.1000-3886.2020.05.006

    李清, 高春燕, 胡長驍, 等. 基于長短期記憶網絡與注意力機制的短期光伏發電預測. 電氣自動化, 2020, 42(5):19 doi: 10.3969/j.issn.1000-3886.2020.05.006
    [15] Chen Z, Che S Y. Photovoltaic output forecast based on cloud models. Acta Energiae Solaris Sin, 2019, 40(11): 3054

    陳中, 車松陽. 基于云變換的光伏出力預測模型. 太陽能學報, 2019, 40(11):3054
    [16] Huang D M, Zhuang X K, Hu A D, et al. Short-term load forecasting based on similar-day selection with GRA-K-means. Electr Power Constr, 2021, 42(7): 110 doi: 10.12204/j.issn.1000-7229.2021.07.013

    黃冬梅, 莊興科, 胡安鐸, 等. 基于灰色關聯分析和K均值聚類的短期負荷預測. 電力建設, 2021, 42(7):110 doi: 10.12204/j.issn.1000-7229.2021.07.013
    [17] Chen G R, Wang B, Cao Z J, et al. Research on wind power prediction based on cluster analysis and optimized neural network. Electr Autom, 2020, 42(3): 24 doi: 10.3969/j.issn.1000-3886.2020.03.008

    陳桂儒, 王冰, 曹智杰, 等. 基于聚類分析和優化神經網絡的風電功率預測研究. 電氣自動化, 2020, 42(3):24 doi: 10.3969/j.issn.1000-3886.2020.03.008
    [18] Yu Y, Chen G, Yu J L, et al. Grid-connected power forecasting of concentrating solar power plants based on clustering and long short-term memory neural network. Therm Power Gener, 2021, 50(9): 128 doi: 10.19666/j.rlfd.202101048

    余洋, 陳庚, 余佳磊, 等. 基于聚類和長短期記憶神經網絡的光熱電站并網電力預測. 熱力發電, 2021, 50(9):128 doi: 10.19666/j.rlfd.202101048
    [19] Liu X L, Huang C, Wang L, et al. Clustering and LSTM-based robust day-ahead hourly forecasting of photovoltaic power. Comput Technol Dev, 2023, 33(3): 120 doi: 10.3969/j.issn.1673-629X.2023.03.018

    劉興霖, 黃超, 王龍, 等. 基于聚類和LSTM的光伏功率日前逐時魯棒預測. 計算機技術與發展, 2023, 33(3):120 doi: 10.3969/j.issn.1673-629X.2023.03.018
    [20] Wen T T, Guo Y X, Dong S R, et al. Assessment of CRU, ERA5, CMFD grid precipitation data for the Tibetan Plateau from 1979 to 2017. Arid Zone Res, 2022, 39(3): 684 doi: 10.13866/j.azr.2022.03.03

    溫婷婷, 郭英香, 董少睿, 等. 1979—2017年CRU、ERA5、CMFD格點降水數據在青藏高原適用性評估. 干旱區研究, 2022, 39(3):684 doi: 10.13866/j.azr.2022.03.03
    [21] Zhang J B, Shen R P, Shi C X, et al. Evaluation and comparison of downward solar radiation from new generation atmospheric reanalysis ERA5 across China’s mainland. J Geo Inf Sci, 2021, 23(12): 2261 doi: 10.12082/dqxxkx.2021.180357

    張俊兵, 沈潤平, 師春香, 等. 中國大陸地區ERA5下行短波輻射數據適用性評估與對比. 地球信息科學學報, 2021, 23(12):2261 doi: 10.12082/dqxxkx.2021.180357
    [22] Liu T T, Zhu X F, Guo R, et al. Applicability of ERA5 reanalysis of precipitation data in China. Arid Land Geogr, 2022, 45(1): 66 doi: 10.12118/j.issn.10006060.2021.132

    劉婷婷, 朱秀芳, 郭銳, 等. ERA5再分析降水數據在中國的適用性分析. 干旱區地理, 2022, 45(1):66 doi: 10.12118/j.issn.10006060.2021.132
    [23] Zhu J, Yuan H Z. Applicability of ERA reanalysis data of land surface temperature in Zhejiang Province. Meteorol Sci Technol, 2019, 47(2): 289 doi: 10.19517/j.1671-6345.20180171

    朱景, 袁慧珍. ERA再分析陸面溫度資料在浙江省的適用性. 氣象科技, 2019, 47(2):289 doi: 10.19517/j.1671-6345.20180171
    [24] Meng X G, Guo J J, Han Y Q. Preliminarily assessment of ERA5 reanalysis data. J Mar Meteorol, 2018, 38(1): 91

    孟憲貴, 郭俊建, 韓永清. ERA5再分析數據適用性初步評估. 海洋氣象學報, 2018, 38(1):91
    [25] Dunn J C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters. J Cybern, 1973, 3(3): 32 doi: 10.1080/01969727308546046
    [26] Lü W J, Fang Y F, Cheng Z. Prediction of day-ahead photovoltaic output based on FCM-WS-CNN. Power Syst Technol, 2022, 46(1): 231 doi: 10.13335/j.1000-3673.pst.2020.2246

    呂偉杰, 方一帆, 程澤. 基于模糊C均值聚類和樣本加權卷積神經網絡的日前光伏出力預測研究. 電網技術, 2022, 46(1):231 doi: 10.13335/j.1000-3673.pst.2020.2246
    [27] Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput, 1997, 9(8): 1735 doi: 10.1162/neco.1997.9.8.1735
    [28] Sahin S O, Kozat S S. Nonuniformly sampled data processing using LSTM networks. IEEE Trans Neural Netw Learn Syst, 2019, 30(5): 1452 doi: 10.1109/TNNLS.2018.2869822
  • 加載中
  • 圖(7) / 表(3)
    計量
    • 文章訪問數:  159
    • HTML全文瀏覽量:  38
    • PDF下載量:  22
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2023-02-24
    • 網絡出版日期:  2023-05-23

    目錄

      /

      返回文章
      返回