• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
    • 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    煅燒溫度對柳葉灰火山灰活性的調控機制

    王超宇 戚庭野 馮國瑞 楊頌 王昊晨 王林飛 高歆于

    王超宇, 戚庭野, 馮國瑞, 楊頌, 王昊晨, 王林飛, 高歆于. 煅燒溫度對柳葉灰火山灰活性的調控機制[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.10.14.003
    引用本文: 王超宇, 戚庭野, 馮國瑞, 楊頌, 王昊晨, 王林飛, 高歆于. 煅燒溫度對柳葉灰火山灰活性的調控機制[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.10.14.003
    WANG Chaoyu, QI Tingye, FENG Guorui, YANG Song, WANG Haochen, WANG Linfei, GAO Xinyu. Study of the regulation mechanism of calcination temperature on the pozzolanic activity of willow leaf ash[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.14.003
    Citation: WANG Chaoyu, QI Tingye, FENG Guorui, YANG Song, WANG Haochen, WANG Linfei, GAO Xinyu. Study of the regulation mechanism of calcination temperature on the pozzolanic activity of willow leaf ash[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.14.003

    煅燒溫度對柳葉灰火山灰活性的調控機制

    doi: 10.13374/j.issn2095-9389.2022.10.14.003
    基金項目: 國家杰出青年科學基金資助項目(51925402);山西省科技重大專項資助項目(20201102004);山西浙大新材料與化工研究院研發資助項目(2021SX-TD001,2021SX-TD002)
    詳細信息
      通訊作者:

      Email: qty198402@163.com

    • 中圖分類號: TU528.04

    Study of the regulation mechanism of calcination temperature on the pozzolanic activity of willow leaf ash

    More Information
    • 摘要: 生物質能源作為可再生的清潔能源是傳統化石能源的替代品之一,但是其作為工業燃料燃燒時會產生大量具有火山灰活性的生物質灰,研究煅燒溫度對生物質灰火山灰活性的調控機制有助于生物質灰的高效利用. 基于此,本文測試評價了500、700、850 ℃柳葉灰的火山灰活性,采用X射線熒光光譜儀(XRF)、X射線衍射(XRD)、傅里葉紅外光譜儀(FTIR)和激光粒度分析儀、顯微電泳儀等表征手段,測試了柳葉灰的理化性質;考察柳葉灰替代20%質量分數水泥后柳葉灰–水泥基材料的力學性能;通過強度指數、活性離子析出能力和火山灰反應效率,評價柳葉灰的火山灰活性特征,結合掃描電鏡(SEM)、XRD等表征手段,闡明煅燒溫度對柳葉灰結構組成及火山灰活性調控機制. 結果表明:柳葉灰的主要氧化物為SiO2和CaO,柳葉灰替代部分水泥后500 ℃柳葉灰–水泥基材料抗壓強度最大,強度指數為0.79,具有最強的火山灰活性;500 ℃和700 ℃柳葉灰Zeta電位的絕對值和電導率變化率大于850 ℃的,Si4+析出濃度隨煅燒溫度升高而下降,過高的煅燒溫度會導致柳葉灰出現結渣現象影響火山灰反應的進行. 本研究為生物質灰火山灰活性的調控及在水泥基材料中的應用提供理論支撐.

       

    • 圖  1  柳葉灰的制備

      Figure  1.  Preparation of the willow leaf ash

      圖  2  柳葉灰的粒徑分布

      Figure  2.  Particle size distribution of the willow leaf ash

      圖  3  堿溶液浸泡時間對柳葉灰溶液Zeta電位的影響

      Figure  3.  Effect of soaking time of alkali solution on the zeta potential of the willow leaf ash solution

      圖  4  柳葉灰的XRD圖

      Figure  4.  X-ray diffraction pattern of the willow leaf ash

      圖  5  柳葉灰的Fourier變換紅外光譜圖

      Figure  5.  Fourier-transform infrared spectra of the willow leaf ash

      圖  6  7 d和28 d齡期柳葉灰–水泥基材料的力學性能. (a) 7 d應力應變曲線; (b) 28 d應力應變曲線; (c)抗壓強度

      Figure  6.  Mechanical properties of willow leaf ash–cement-based materials after 7 and 28 days of preparation: (a) 7 d stress–strain curve; (b) 28 d stress–strain curve; (c) compressive strength of the willow leaf ash–cement-based materials

      圖  7  柳葉灰的pH值變化(a)、電導率變化(b)、電導率變化率(c)

      Figure  7.  pH value variation (a), conductivity variation (b), and the rate of conductivity variation of the willow ash (c)

      圖  8  柳葉灰及其濾渣的微觀結構. (a) 500 ℃; (b) 700 ℃; (c) 850 ℃; (d) 500 ℃濾渣; (e) 700 ℃濾渣; (f) 850 ℃濾渣

      Figure  8.  Microstructures of the willow leaf ash and its filtered residues: (a) 500 ℃; (b)700 ℃; (c)850 ℃; (d) 500 ℃ residue; (e) 700 ℃ residue; (f) 850 ℃ residue

      圖  9  柳葉灰濾渣的XRD圖

      Figure  9.  X-ray diffraction pattern of the willow leaf ash filtered residue

      表  1  柳葉灰–水泥基材料配比表

      Table  1.   Ratio of willow leaf ash–cement-based materials

      Test groupCalcination temperature/℃Replacement rate (mass fraction)/%Willow leaf ash/gCement/gStandard sand/gWater/g
      Reference group636.111749.30307.88
      Experimental group 150020127.22508.891749.30338.66
      Experimental group 270020127.22508.891749.30348.66
      Experimental group 385020127.22508.891749.30348.66
      下載: 導出CSV

      表  2  柳葉灰的化學成分和比表面積

      Table  2.   Chemical composition and specific surface areas of the willow leaf ash

      SampleMass fraction/%Specific surface area / (m2·g?1)
      SiO2Al2O3Fe2O3CaOMgOSO3TiO2K2ONa2OP2O5Cl
      500 ℃ WLA21.480.730.4329.794.987.490.056.720.540.570.840.823
      700 ℃ WLA25.530.990.6034.256.087.860.067.080.720.750.800.836
      850 ℃ WLA30.021.410.8137.457.078.060.097.880.840.840.600.914
      下載: 導出CSV

      表  3  柳葉灰溶解在堿性溶液中的Si4+和Al3+質量濃度

      Table  3.   Concentrations of Si4+ and Al3+ in the willow leaf ash dissolved in the alkaline solution

      SampleAl3+/(mg·L?1)Si4+/(mg·L?1)
      500 ℃ WLA700 ℃ WLA850 ℃ WLA500 ℃ WLA700 ℃ WLA850 ℃ WLA
      0.1 mol·L?1 NaOH3.1627.327<0.00181.79178.16470.540
      0.5 mol·L?1 NaOH1.1450.9760.00775.45167.67654.425
      0.1 mol·L?1 KOH2.5204.976<0.00140.09128.40519.576
      0.5 mol·L?1 KOH0.5280.244<0.00127.20325.30718.929
      Saturated Ca(OH)2<0.001<0.001<0.0018.9978.1127.733
      下載: 導出CSV
    • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <table id="y4y0w"><option id="y4y0w"></option></table>
    • <li id="y4y0w"></li>
      <noscript id="y4y0w"></noscript>
      <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
      <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <menu id="y4y0w"></menu>
      <table id="y4y0w"><rt id="y4y0w"></rt></table>
    啪啪啪视频
  • [1] Ma L L, Tang Z H, Wang C W, et al. Research status and future development strategy of biomass energy. Bull Chin Acad Sci, 2019, 34(4): 434 doi: 10.16418/j.issn.1000-3045.2019.04.008

    馬隆龍, 唐志華, 汪叢偉, 等. 生物質能研究現狀及未來發展策略. 中國科學院院刊, 2019, 34(4):434 doi: 10.16418/j.issn.1000-3045.2019.04.008
    [2] Munawar M A, Khoja A H, Naqvi S R, et al. Challenges and opportunities in biomass ash management and its utilization in novel applications. Renew Sustain Energy Rev, 2021, 150: 111451 doi: 10.1016/j.rser.2021.111451
    [3] Liang G B, Li Y H, Yang C, et al. Ash properties correlated with diverse types of biomass derived from power plants: An overview. Energy Sources A, 2020: 1
    [4] Katare V D, Madurwar M V. Use of processed biomass ash as a sustainable pozzolana. Curr Sci, 2019, 116(5): 741 doi: 10.18520/cs/v116/i5/741-750
    [5] Fo?t J, ?ál J, ?ev?ík R, et al. Biomass fly ash as an alternative to coal fly ash in blended cements: Functional aspects. Constr Build Mater, 2021, 271: 121544 doi: 10.1016/j.conbuildmat.2020.121544
    [6] Wang J L, Xiao J, Zhang Z D, et al. Action mechanism of rice husk ash and the effect on main performances of cement-based materials: A review. Constr Build Mater, 2021, 288: 123068 doi: 10.1016/j.conbuildmat.2021.123068
    [7] Neto J S A, de Fran?a M J S, de Amorim Junior N S, et al. Effects of adding sugarcane bagasse ash on the properties and durability of concrete. Constr Build Mater, 2021, 266: 120959 doi: 10.1016/j.conbuildmat.2020.120959
    [8] Cordeiro G C, Sales C P. Pozzolanic activity of elephant grass ash and its influence on the mechanical properties of concrete. Cem Concr Compos, 2015, 55: 331 doi: 10.1016/j.cemconcomp.2014.09.019
    [9] Saladi N, Ashraf W. Ground and sieved bio ash versus coal fly ash: Comparative analysis of pozzolanic reactivity. J Mater Civ Eng, 2020, 32(12): 04020377 doi: 10.1061/(ASCE)MT.1943-5533.0003443
    [10] Emerson R M, Hernandez S, Williams C L, et al. Improving bioenergy feedstock quality of high moisture short rotation woody crops using air classification. Biomass Bioenergy, 2018, 117: 56 doi: 10.1016/j.biombioe.2018.07.015
    [11] Gehrig M, Jaeger D, Pelz S K, et al. Influence of a direct firebed cooling in a residential wood pellet boiler with an ash-rich fuel on the combustion process and emissions. Energy Fuels, 2016, 30(11): 9900 doi: 10.1021/acs.energyfuels.6b02177
    [12] Hangs R D, Schoenau J J, Van Rees K C J, et al. Leaf litter decomposition and nutrient-release characteristics of several willow varieties within short-rotation coppice plantations in Saskatchewan, Canada. Bioenerg Res, 2014, 7(4): 1074 doi: 10.1007/s12155-014-9431-y
    [13] Martirena F, Monzó J. Vegetable ashes as supplementary cementitious materials. Cem Concr Res, 2018, 114: 57 doi: 10.1016/j.cemconres.2017.08.015
    [14] Memon S A, Khan M K. Ash blended cement composites: Eco-friendly and sustainable option for utilization of corncob ash. J Clean Prod, 2018, 175: 442 doi: 10.1016/j.jclepro.2017.12.050
    [15] Memon S A, Wahid I, Khan M K, et al. Environmentally friendly utilization of wheat straw ash in cement-based composites. Sustainability, 2018, 10(5): 1322 doi: 10.3390/su10051322
    [16] Villar Coci?a E, Savastano H, Rodier L, et al. Pozzolanic characterization of Cuban bamboo leaf ash: Calcining temperature and kinetic parameters. Waste Biomass Valor, 2018, 9(4): 691 doi: 10.1007/s12649-016-9741-8
    [17] Liang G W, Zhu H J, Zhang Z H, et al. Investigation of the waterproof property of alkali-activated metakaolin geopolymer added with rice husk ash. J Clean Prod, 2019, 230: 603 doi: 10.1016/j.jclepro.2019.05.111
    [18] Feng G R, Qi T Y, Guo Y X, et al. Physical and chemical characterization of the ash of fallen Chinese willow leaves: Effects of calcination temperature and aqueous solution. Combust Sci Technol, 2020, 192(5): 871 doi: 10.1080/00102202.2019.1594801
    [19] Standardization Administration of China. GB/T 17671—2021 Test Method of Cement Mortar Strength (ISO Method ). Beijing: Standards Press of China, 2021

    國家標準化管理委員會. GB/T 17671—2021水泥膠砂強度檢驗方法(ISO法). 北京:中國標準出版社, 2021
    [20] American Society of Testing Materials. D421 Practice for Dry Preparation of Soil Samples for Particle-Size Analysis and Determination of Soil Constants. America: ASTM International, 2016
    [21] American Society of Testing Materials. D422 Standard Test Method for Particle-Size Analysis of Soils. America: ASTM International, 2016
    [22] Wang H C, Qi T Y, Feng G R, et al. Effect of partial substitution of corn straw fly ash for fly ash as supplementary cementitious material on the mechanical properties of cemented coal gangue backfill. Constr Build Mater, 2021, 280: 122553 doi: 10.1016/j.conbuildmat.2021.122553
    [23] Feng G R, Qi T Y, Wang Z H, et al. Physical and chemical characterization of Chinese maize stalk leaf ash: Calcining temperature and aqueous solution. BioResources, 2019, 14(1): 977
    [24] Yin S H, Liu J M, Chen W, et al. Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation. Chin J Eng, 2020, 42(7): 829

    尹升華, 劉家明, 陳威, 等. 不同粗骨料對膏體凝結性能的影響及配比優化. 工程科學學報, 2020, 42(7):829
    [25] Zhang H, Hu X M, Wang W, et al. Preparation and characteristics of xanthan gum and MgO modified clay–cement based new spraying material of gas sealing. J China Coal Soc, 2021, 46(6): 1768

    張昊, 胡相明, 王偉, 等. 黃原膠和氧化鎂改性黏土–水泥基新型噴涂堵漏風材料的制備及特征. 煤炭學報, 2021, 46(6):1768
    [26] Knudsen J N, Jensen P A, Dam-Johansen K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass. Energy Fuels, 2004, 18(5): 1385 doi: 10.1021/ef049944q
    [27] Zhang Q Q, Zhang L H, Ran Q P, et al. Effect of limestone powder on rheological properties of cement paste and its mechanism. J Build Mater, 2019, 22(5): 680 doi: 10.3969/j.issn.1007-9629.2019.05.002

    張倩倩, 張麗輝, 冉千平, 等. 石灰石粉對水泥漿體流變性能的影響及作用機理. 建筑材料學報, 2019, 22(5):680 doi: 10.3969/j.issn.1007-9629.2019.05.002
    [28] Zhu Y J, Hu J H, Yang W, et al. Ash fusion characteristics and transformation behaviors during bamboo combustion in comparison with straw and poplar. Energy Fuels, 2018, 32(4): 5244 doi: 10.1021/acs.energyfuels.8b00371
    [29] Soltani N, Bahrami A, Pech-Canul M I, et al. Review on the physicochemical treatments of rice husk for production of advanced materials. Chem Eng J, 2015, 264: 899 doi: 10.1016/j.cej.2014.11.056
    [30] Yang K, Zhao X Y, He X, et al. Experimental study on proportion of coal-based solid waste backfill materials. Shanxi Coal, 2021, 41(4): 2

    楊科, 趙新元, 何祥, 等. 煤基固廢充填材料配比試驗研究. 山西煤炭, 2021, 41(4):2
    [31] Poliah R, Sreekantan S. Characterization and photocatalytic activity of enhanced copper-silica-loaded titania prepared via hydrothermal method. J Nanomater, 2011, 2011: 1
    [32] Guo W, Li D X, Yang N R. Ions dissolving-out characteristics of calcined coal gangues in alkalinesolutions and its structure. J Chin Ceram Soc, 2004, 32(10): 1229 doi: 10.3321/j.issn:0454-5648.2004.10.009

    郭偉, 李東旭, 楊南如. 煅燒煤矸石在堿溶液中的離子溶出特性及其結構. 硅酸鹽學報, 2004, 32(10):1229 doi: 10.3321/j.issn:0454-5648.2004.10.009
    [33] Xu H, van Deventer J S J. The effect of alkali metals on the formation of geopolymeric gels from alkali-feldspars. Colloids Surf A, 2003, 216(1-3): 27 doi: 10.1016/S0927-7757(02)00499-5
    [34] Simonsen M E, S?nderby C, S?gaard E G. Synthesis and characterization of silicate polymers. J Sol-Gel Sci Technol, 2009, 50(3): 372 doi: 10.1007/s10971-009-1907-4
    [35] Chen H M, Wang P J, Pan J, et al. Effect of alkali-resistant glass fiber and silica fume on mechanical and shrinkage properties of cement-based mortars. Constr Build Mater, 2021, 307: 125054 doi: 10.1016/j.conbuildmat.2021.125054
    [36] Liu J H, Zhou Z B, Wu A X, et al. Preparation and hydration mechanism of low concentration Bayer red mud filling materials. Chin J Eng, 2020, 42(11): 1457

    劉娟紅, 周在波, 吳愛祥, 等. 低濃度拜耳赤泥充填材料制備及水化機理. 工程科學學報, 2020, 42(11):1457
  • 加載中
  • 圖(9) / 表(3)
    計量
    • 文章訪問數:  191
    • HTML全文瀏覽量:  14
    • PDF下載量:  3
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-10-14
    • 網絡出版日期:  2023-03-20

    目錄

      /

      返回文章
      返回