• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
    • 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    高強度高應力循環穩定的HDH多孔NiTi形狀記憶合金

    杜昌海 李東陽 朱本銀 李益民 羅豐華

    杜昌海, 李東陽, 朱本銀, 李益民, 羅豐華. 高強度高應力循環穩定的HDH多孔NiTi形狀記憶合金[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.10.10.003
    引用本文: 杜昌海, 李東陽, 朱本銀, 李益民, 羅豐華. 高強度高應力循環穩定的HDH多孔NiTi形狀記憶合金[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.10.10.003
    DU Changhai, LI Dongyang, ZHU Benyin, LI Yimin, LUO Fenghua. High-strength porous Ni–Ti shape-memory alloys with stabilized high-stress cyclic properties[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.10.003
    Citation: DU Changhai, LI Dongyang, ZHU Benyin, LI Yimin, LUO Fenghua. High-strength porous Ni–Ti shape-memory alloys with stabilized high-stress cyclic properties[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.10.003

    高強度高應力循環穩定的HDH多孔NiTi形狀記憶合金

    doi: 10.13374/j.issn2095-9389.2022.10.10.003
    基金項目: 長沙市科技計劃資助項目(kh2102014,kq2102003)
    詳細信息
      通訊作者:

      E-mail: dongyangl@csu.edu.cn

    • 中圖分類號: TG139.6

    High-strength porous Ni–Ti shape-memory alloys with stabilized high-stress cyclic properties

    More Information
    • 摘要: 以氫化脫氫(Hydrogenation dehydrogenation, HDH)鈦粉和鎳粉為原料制備的多孔NiTi形狀記憶合金普遍承載性能與可恢復應變較差. 本研究以NaCl為造孔劑,通過在高真空(10?4 Pa)下高溫(1250 ℃)均勻化燒結制備出了高強度、高應力循環穩定的多孔NiTi合金,研究了不同孔隙率下的微觀結構、相變行為、力學性能以及細胞毒性. 研究發現,隨著NaCl添加量的增加,樣品的孔隙率和孔徑增大,同時氧含量略有增加. 在樣品中觀察到無熱處理自發形成的Ni4Ti3沉淀相,沉淀相尺寸隨樣品氧含量增加而增加. 所有樣品的馬氏體相變均呈現多峰現象,主要歸因于非均勻分布的Ni4Ti3沉淀相引發的多步相變效應. 孔隙率為14% ~ 37%的多孔NiTi合金的壓縮強度為1236 ~1600 MPa. 與其他粉末冶金法制備多孔NiTi合金的抗壓強度相比,本研究所獲得的合金表現出超高的強度. 樣品在8%應變壓縮加載–卸載后同時表現出超彈性和形狀記憶效應,經加熱處理后形狀恢復率超過99%. 在循環壓縮實驗中,多孔NiTi樣品在接近8%應變的高應力下承受了50次循環. 樣品的殘余應變隨著周期數的增加而增加. 隨著孔隙率的增加,循環結束時的最終殘余應變為1.4%、1.55%和1.66%. 低的殘余應變說明多孔NiTi樣品在高應力壓縮環境中具有較好的穩定性,這歸因于Ni4Ti3沉淀相對基體的強化作用. 使用MC3T3E1 細胞評估了樣品的細胞毒性,結果表明多孔NiTi樣品具有較低的細胞毒性.

       

    • 圖  1  原材料粉末的SEM形貌圖(a) Ti, (b) Ni, (c) NaCl; (d) 壓制樣品和燒結態樣品; (e) 真空燒結過程的示意圖; (f) 用于壓縮測試的樣品

      Figure  1.  Scanning electron microscopy images of (a) Ti, (b) Ni, and (c) NaCl raw powders; (d) green and sintered samples; (e) schematic diagram of the vacuum sintering process; (f) as-sintered samples for compressive and compressive recovery tests

      圖  2  細胞毒性測試中用于制備浸提液樣品

      Figure  2.  Samples for preparing the extract-solution for the cytotoxicity tests

      圖  3  多孔NiTi合金的二次電子圖像(a) P15, (b) P25, (c) P40; (d) P15在高倍率下的背散射圖

      Figure  3.  Secondary electron images of the porous Ni–Ti alloys (a) P15, (b) P25, and (c) P40; (d) high-magnification backscattered electron image of the P15 sample

      圖  4  室溫下的多孔NiTi合金的XRD圖譜

      Figure  4.  X-ray diffraction patterns of the porous Ni–Ti alloys at room temperature

      圖  5  TEM形貌圖(a) P15, (b) P25, (c) P40; (a1~c1) 對應黃色虛線框區域的選區電子衍射(SAED)圖; (d) P40樣品中的高分辨透射圖(HRTEM),d為原子面間距; (e), (d)中黃色方框區域的快速傅里葉變換圖(FFT); (f) P40在HAADF模式下的圖像; (g)和(h)為(f)的EDS面掃描圖; (i) EDS面掃描Ni、Ti元素原子數分數

      Figure  5.  Transmission electron microscopy (TEM) images of (a) P15, (b) P25, and (c) P40 samples; (a1–c1) selected area electron diffraction patterns of the corresponding yellow dotted areas; (d) high-resolution TEM lattice image of the interface in (f), and d is the distance between atomic surfaces; (e) fast-Fourier transform of (d) ; (f) high-angle annular dark-field image of the P40 sample; (g, h) energy-dispersive X-ray spectroscopy (EDS) mapping analysis of (f); (i) EDS results of elemental Ni and Ti contents

      圖  6  DSC曲線. (a) P15; (b) P25; (c) P40

      Figure  6.  Differential scanning calorimetry curves: (a) P15; (b) P25; (c) P40

      圖  7  (a) 多孔NiTi合金的壓縮應力應變曲線; (b) 粉末冶金多孔NiTi合金的壓縮強度對比[4, 7, 9?10, 14?15, 17, 35?37]

      Figure  7.  (a) Compressive stress–strain curves of the porous Ni–Ti alloys; (b) comparison of the compressive strengths of the porous Ni–Ti alloys prepared by powder metallurgy[4, 7, 9?10, 14?15, 17, 35?37]

      圖  8  8%應變加載–卸載的應力應變曲線. (a) P15; (b) P25; (c) P40

      Figure  8.  Stress–strain curves of 8% strain loading–unloading for samples: (a) P15; (b) P25; (c) P40

      圖  9  應力控制的循環加載–卸載應力應變曲線及殘余應變. (a) P15; (b) P25;(c) P40; (d) 循環過程中的殘余應變

      Figure  9.  Cyclic loading–unloading stress–strain curves for stress controls: (a) P15; (b) P25; (c) P40; (d) residual strain during cycling

      圖  10  細胞在浸提液中培養3 d和7 d的相對增殖率

      Figure  10.  Relative proliferation rates of cells in the extract-solution for three and seven days

      表  1  多孔NiTi合金的雜質含量、孔隙參數以及實際Ni當量

      Table  1.   Impurity contents, pore parameters, and calculated Ni contents of the porous Ni–Ti alloys

      Sample Porosity/% Open porosity/% Pore size/μm Carbon mass fraction/% Oxygen mass fraction/% Calculated Ni atomic content/%
      P15 14.0 ± 0.52 11.0 ± 0.52 60 ± 15 0.08 ± 0.01 0.23 ± 0.05 51.64
      P25 22.0 ± 1.41 21.8 ± 0.87 91 ± 20 0.08 ± 0.01 0.29 ± 0.06 51.94
      P40 37.0 ± 1.15 36.7 ± 1.03 124 ± 22 0.09 ± 0.02 0.36 ± 0.04 52.53
      下載: 導出CSV

      表  2  多孔NiTi合金馬氏體和奧氏體相變峰值溫度及相變潛熱

      Table  2.   Peak temperatures of martensitic and austenitic phase transformations and related latent heat values in the porous Ni–Ti alloys

      Samples Cooling Heating
      MP1/℃ MP2/℃ MP3/℃ Exo./(J·g?1) AP1/℃ AP2/℃ AP3/℃ End./(J·g?1)
      P15 33.7 1.6 ?28.6 20.0 0.1 10.9 34 ?24.7
      P25 34.3 3.2 18.7 1.0 14.6 16.4 ?23.2
      P40 35.5 4.8 15.3 2.4 16.4 34.7 ?23.0
      下載: 導出CSV

      表  3  8%應變壓縮加載–卸載測試結果

      Table  3.   Results of the 8% strain compressive loading–unloading tests

      Sample Stress of 8% strain / MPa Superelastic recovery strain/% Memory recovery stain/% Residual strain/%
      P15 615 ± 13 6.74 ± 0.12 1.25 ± 0.24 0.02 ± 0.01
      P25 568 ± 12 6.68 ± 0.11 1.28 ± 0.30 0.04 ± 0.02
      P40 338 ± 13 4.97 ± 0.22 2.43 ± 0.27 0.60 ± 0.08
      下載: 導出CSV

      表  4  MC3T3E1 細胞與多孔NiTi合金共培養3 d和7 d的吸光度值(490 nm特征波長)

      Table  4.   Absorbance values of the MC3T3E1 cell co-culture with the porous Ni–Ti alloys for three and seven days (characteristic wavelength of 490 nm)

      Samples OD490
      3 d 7 d
      Background 0.1917 ± 0.0008 0.1962 ± 0.0011
      Control 2.5466 ± 0.0432 2.9316 ± 0.0382
      P15 2.2361 ± 0.0397 2.8422 ± 0.0091
      P25 2.0532 ± 0.0228 2.8342 ± 0.0321
      P40 1.8191 ± 0.0221 2.7751 ± 0.0143
      Ingot Ni–Ti 2.1512 ± 0.0346 2.8168 ± 0.0359
      下載: 導出CSV
    • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <table id="y4y0w"><option id="y4y0w"></option></table>
    • <li id="y4y0w"></li>
      <noscript id="y4y0w"></noscript>
      <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
      <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <menu id="y4y0w"></menu>
      <table id="y4y0w"><rt id="y4y0w"></rt></table>
    啪啪啪视频
  • [1] Bansiddhi A, Sargeant T D, Stupp S I, et al. Porous NiTi for bone implants: A review. Acta Biomater, 2008, 4(4): 773 doi: 10.1016/j.actbio.2008.02.009
    [2] Zhang Y T, Liu J, Wang L Q, et al. Porous NiTiNb alloys with superior strength and ductility induced by modulating eutectic microregion. Acta Mater, 2022, 239: 118295 doi: 10.1016/j.actamat.2022.118295
    [3] Liu G, Zhang X F, Chen X L, et al. Additive manufacturing of structural materials. Mater Sci Eng, 2021, 145: 100596 doi: 10.1016/j.mser.2020.100596
    [4] Greiner C, Oppenheimer S M, Dunand D C. High strength, low stiffness, porous NiTi with superelastic properties. Acta Biomater, 2005, 1(6): 705 doi: 10.1016/j.actbio.2005.07.005
    [5] Elahinia M H, Hashemi M, Tabesh M, et al. Manufacturing and processing of NiTi implants: A review. Prog Mater Sci, 2012, 57(5): 911 doi: 10.1016/j.pmatsci.2011.11.001
    [6] du Plessis A, Razavi S M J, Benedetti M, et al. Properties and applications of additively manufactured metallic cellular materials: A review. Prog Mater Sci, 2022, 125: 100918 doi: 10.1016/j.pmatsci.2021.100918
    [7] Wisutmethangoon S, Denmud N, Sikong L. Characteristics and compressive properties of porous NiTi alloy synthesized by SHS technique. Mater Sci Eng A, 2009, 515(1?2): 93 doi: 10.1016/j.msea.2009.02.055
    [8] Tang C Y, Zhang L N, Wong C T, et al. Fabrication and characteristics of porous NiTi shape memory alloy synthesized by microwave sintering. Mater Sci Eng A, 2011, 528(18): 6006 doi: 10.1016/j.msea.2011.04.040
    [9] Zhang L, Zhang Y Q, Jiang Y H, et al. Superelastic behaviors of biomedical porous NiTi alloy with high porosity and large pore size prepared by spark plasma sintering. J Alloys Compd, 2015, 644: 513 doi: 10.1016/j.jallcom.2015.05.063
    [10] Bansiddhi A, Dunand D C. Shape-memory NiTi foams produced by replication of NaCl space-holders. Acta Biomater, 2008, 4(6): 1996 doi: 10.1016/j.actbio.2008.06.005
    [11] Li D S, Zhang Y P, Ma X, et al. Space-holder engineered porous NiTi shape memory alloys with improved pore characteristics and mechanical properties. J Alloys Compd, 2009, 474(1?2): L1 doi: 10.1016/j.jallcom.2008.06.043
    [12] K?hl M, Habijan T, Bram M, et al. Powder metallurgical near-net-shape fabrication of porous NiTi shape memory alloys for use as long-term implants by the combination of the metal injection molding process with the space-holder technique. Adv Eng Mater, 2009, 11(12): 959
    [13] Zhao M, Qing H B, Wang Y X, et al. Superelastic behaviors of additively manufactured porous NiTi shape memory alloys designed with Menger sponge-like fractal structures. Mater Des, 2021, 200: 109448 doi: 10.1016/j.matdes.2021.109448
    [14] Khanlari K, Ramezani M, Kelly P, et al. Mechanical and microstructural characteristics of as-sintered and solutionized porous 60NiTi. Intermetallics, 2018, 100: 32 doi: 10.1016/j.intermet.2018.06.001
    [15] Zhu S L, Yang X J, Fu D H, et al. Stress-strain behavior of porous NiTi alloys prepared by powders sintering. Mater Sci Eng A, 2005, 408(1?2): 264 doi: 10.1016/j.msea.2005.08.012
    [16] Xu J L, Bao L Z, Liu A H, et al. Effect of pore sizes on the microstructure and properties of the biomedical porous NiTi alloys prepared by microwave sintering. J Alloys Compd, 2015, 645: 137 doi: 10.1016/j.jallcom.2015.05.006
    [17] Chu C L, Chung C Y, Lin P H, et al. Fabrication and properties of porous NiTi shape memory alloys for heavy load-bearing medical applications. J Mater Process Technol, 2005, 169(1): 103 doi: 10.1016/j.jmatprotec.2005.03.002
    [18] Rahim M, Frenzel J, Frotscher M, et al. Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Mater, 2013, 61(10): 3667 doi: 10.1016/j.actamat.2013.02.054
    [19] Bram M, K?hl M, Buchkremer H P, et al. Mechanical properties of highly porous NiTi alloys. J Materi Eng Perform, 2011, 20(4): 522
    [20] Whitney M, Corbin S F, Gorbet R B. Investigation of the mechanisms of reactive sintering and combustion synthesis of NiTi using differential scanning calorimetry and microstructural analysis. Acta Mater, 2008, 56(3): 559 doi: 10.1016/j.actamat.2007.10.012
    [21] Whitney M, Corbin S F, Gorbet R B. Investigation of the influence of Ni powder size on microstructural evolution and the thermal explosion combustion synthesis of NiTi. Intermetallics, 2009, 17(11): 894 doi: 10.1016/j.intermet.2009.03.018
    [22] Chen G, Liss K D, Cao P. In situ observation and neutron diffraction of NiTi Powder sintering. Acta Mater, 2014, 67: 32 doi: 10.1016/j.actamat.2013.12.013
    [23] Taheri Andani M, Saedi S, Turabi A S, et al. Mechanical and shape memory properties of porous Ni50.1Ti49.9 alloys manufactured by selective laser melting. J Mech Behav Biomed Mater, 2017, 68: 224
    [24] Wu Z G, Mahmud A, Zhang J S, et al. Surface oxidation of NiTi during thermal exposure in flowing argon environment. Mater Des, 2018, 140: 123 doi: 10.1016/j.matdes.2017.11.061
    [25] Lu H Z, Ma H W, Cai W S, et al. Stable tensile recovery strain induced by a Ni4Ti3 nanoprecipitate in a Ni50.4Ti49.6 shape memory alloy fabricated via selective laser melting. Acta Mater, 2021, 219: 117261
    [26] Zhou Y H, Yao X Y, Lu W F, et al. Heat treatment of hot-isostatic-pressed 60NiTi shape memory alloy: Microstructure, phase transformation and mechanical properties. J Mater Sci Technol, 2022, 107: 124 doi: 10.1016/j.jmst.2021.10.005
    [27] Li D Y, He H, Lou J, et al. Local formation of Ni4Ti3 in non-equilibrium state and its influence on the transformation temperature of Ti-rich NiTi alloys. J Alloys Compd, 2021, 852: 157065 doi: 10.1016/j.jallcom.2020.157065
    [28] Frenzel J, George E P, Dlouhy A, et al. Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater, 2010, 58(9): 3444 doi: 10.1016/j.actamat.2010.02.019
    [29] Xue D Q, Zhou Y M, Ren X B. The effect of aging on the B2-R transformation behaviors in Ti–51at%Ni alloy. Intermetallics, 2011, 19(11): 1752 doi: 10.1016/j.intermet.2011.07.014
    [30] Kim J I, Liu Y N, Miyazaki S. Ageing-induced two-stage R-phase transformation in Ti–50. 9at. %Ni. Acta Mater, 2004, 52(2): 487 doi: 10.1016/j.actamat.2003.09.032
    [31] Zhu J M, Wu H H, Wu Y, et al. Influence of Ni4Ti3 precipitation on martensitic transformations in NiTi shape memory alloy: R phase transformation. Acta Mater, 2021, 207: 116665 doi: 10.1016/j.actamat.2021.116665
    [32] Li Z, Xiao F, Chen H, et al. Atomic scale modeling of the coherent strain field surrounding Ni4Ti3 precipitate and its effects on thermally-induced martensitic transformation in a NiTi alloy. Acta Mater, 2021, 211: 116883 doi: 10.1016/j.actamat.2021.116883
    [33] Khalil-Allafi J, Dlouhy A, Eggeler G. Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater, 2002, 50(17): 4255 doi: 10.1016/S1359-6454(02)00257-4
    [34] Huo X Y, Chen P, Lahkar S, et al. Occurrence of the R-phase with increased stability induced by low temperature precipitate-free aging in a Ni50.9Ti49.1 alloy. Acta Mater, 2022, 227: 117688
    [35] ?pek Naka? G, Dericio?lu A F, Bor ?. Monotonic and cyclic compressive behavior of superelastic TiNi foams processed by sintering using magnesium space holder technique. Mater Sci Eng A, 2013, 582: 140 doi: 10.1016/j.msea.2013.06.011
    [36] Peng W L, Liu K, Ali Shah B, et al. Enhanced internal friction and specific strength of porous TiNi shape memory alloy composite by the synergistic effect of pore and Ti2Ni. J Alloys Compd, 2020, 816: 152578 doi: 10.1016/j.jallcom.2019.152578
    [37] Xu J L, Bao L Z, Liu A H, et al. Microstructure, mechanical properties and superelasticity of biomedical porous NiTi alloy prepared by microwave sintering. Mater Sci Eng C, 2015, 46: 387 doi: 10.1016/j.msec.2014.10.053
    [38] Cluff D R, Corbin S F, Gharghouri M A. Investigating the influence of Ti powder purity on phase evolution during NiTi sintering using in situ neutron diffraction. Intermetallics, 2017, 83: 43 doi: 10.1016/j.intermet.2016.12.001
    [39] Wang X B, Pu Z, Yang Q, et al. Improved functional stability of a coarse-grained Ti–50. 8?at. % Ni shape memory alloy achieved by precipitation on dislocation networks. Scr Mater, 2019, 163: 57
    [40] Chen H, Xiao F, Liang X, et al. Improvement of the stability of superelasticity and elastocaloric effect of a Ni-rich Ti–Ni alloy by precipitation and grain refinement. Scr Mater, 2019, 162: 230 doi: 10.1016/j.scriptamat.2018.11.024
    [41] Gao Y, Casalena L, Bowers M L, et al. An origin of functional fatigue of shape memory alloys. Acta Mater, 2017, 126: 389 doi: 10.1016/j.actamat.2017.01.001
    [42] Yu B Q, Yuan W H, Xu Q, et al. Comparison of nickle release and cytocompatibility between porous and dense NiTi alloy. Trans Nonferrous Met Soc China, 2021, 31(12): 3814 doi: 10.1016/S1003-6326(21)65766-7
    [43] Chmielewska A, Dobkowska A, Kijeńska-Gawrońska E, et al. Biological and corrosion evaluation of in situ alloyed NiTi fabricated through laser powder bed fusion (LPBF). Int J Mol Sci, 2021, 22(24): 13209 doi: 10.3390/ijms222413209
    [44] Hang R Q, Liu Y L, Liu S, et al. Size-dependent corrosion behavior and cytocompatibility of Ni–Ti–O nanotubes prepared by anodization of biomedical NiTi alloy. Corros Sci, 2016, 103: 173 doi: 10.1016/j.corsci.2015.11.016
    [45] ?ev?íková J, Bártková D, Goldbergová M, et al. On the Ni–Ion release rate from surfaces of binary NiTi shape memory alloys. Appl Surf Sci, 2018, 427: 434 doi: 10.1016/j.apsusc.2017.08.235
  • 加載中
  • 圖(10) / 表(4)
    計量
    • 文章訪問數:  303
    • HTML全文瀏覽量:  28
    • PDF下載量:  32
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-10-10
    • 網絡出版日期:  2022-11-29

    目錄

      /

      返回文章
      返回