-
摘要: 風能的規模化利用是構建現代能源體系的關鍵,是保障國家能源安全,力爭如期實現碳達峰、碳中和的內在要求. 我國風電裝機容量持續攀升,早期風電機組陸續面臨報廢. 廢舊風電葉片的資源化利用面臨拆解難、降解難等多重難題,亟需探索綠色高值化、具有規模消納能力的資源化技術路線,支撐風電產業綠色可持續發展. 本文分析了我國風電產業發展概況和風電機組報廢量的增長趨勢,概括了廢舊葉片資源化利用的主要技術途徑,重點介紹了纖維增強復合材料的機械法、熱法和化學法回收利用,以及廢舊葉片在混凝土等建筑材料中的應用和葉片整體結構性利用等資源化利用技術方案,并對比分析了各類技術方案的優缺點,為廢舊風電葉片的資源化利用研究方向提供參考.Abstract: The large-scale utilization of wind energy is the key to establishing a modern energy system, an essential prerequisite for achieving carbon peaking and neutrality as planned, and an essential support for quality economic and social development. The installed wind power capacity continues to grow in China; by the end of 2022, the number of installed wind turbines had surpassed more than 170000 sets, and that of the cumulative installed blades had surpassed 3.65 million tons. Accordingly, early wind turbines are being decommissioned. The use of end-of-life wind turbine blades as a resource presents numerous challenges, such as disassembly- and degradation-related issues. Therefore, there is an urgent need to investigate green and high-value utilization technology paths capable of large-scale consumption to support the green and sustainable development of the wind power industry. This review examines the wind power industry and the growth trend of end-of-life wind turbines in China, outlines the main technical pathways of waste wind blade resource utilization, and highlights several waste wind blade resource utilization methods. ① Mechanical, thermal, and chemical recycling methods for fiber-reinforced composites: Mechanical recycling is a simple and traditional pathway that cannot provide long-scale fibers, thermal recycling damages the mechanical properties of long-scale fibers and makes reusing the matrix resin difficult, and chemical recycling preserves the mechanical properties of long-scale fibers and allows for the reuse of the matrix resin but at a high cost. Therefore, to achieve the sustainable reuse of reinforcing fibers and matrix resin, further research on the low-cost recycling method for fiber-reinforced composites from waste wind turbine blades is required. ② Application of waste blades in concrete and other construction materials: The blade, when cut into small pieces, can be used to replace natural aggregates in concrete materials. However, its organic components are not conducive to cement hydration, nor are the low-strength filler materials, such as balsa wood, conducive to the structural strength of concrete. ③ Structural utilization of waste blades: Waste blades can have structural reuse applications in pedestrian bridges, park benches, playground facilities, bus stops, and house roofs. Although reuse is simple and feasible, the blade materials need to be rendered nonhazardous and resourceful after the reuse cycle. This review compares and analyzes the benefits and drawbacks of various technical solutions to provide a reference for future research on the utilization of waste wind turbine blades.
-
Key words:
- wind power generation /
- waste wind turbine blades /
- recycling /
- reinforced fibers /
- concrete /
- structural reuse
-
圖 4 拉伸試樣制備過程及玻璃纖維的SEM圖像. (a)風電葉片;(b)機械破碎研磨;(c)篩分;(d)長絲擠出;(e) 3D打印拉伸試樣;(f) ASTM D638 type 1拉伸試樣;(g)原生纖維;(h)研磨回收的纖維;(i)研磨后經熱處理的纖維(紅色圓圈中為環氧樹脂顆粒)[17]
Figure 4. Processing scheme and scanning electron microscopy images of the fibers: (a) wind turbine blade; (b) mechanical grinding; (c) sieving; (d) filament extrusion; (e) three-dimensional printing of the specimens; (f) ASTM D638 type 1 (final product); (g) virgin fibers; (h) ground fibers; (i) pyrolyzed fibers. Red circles indicate epoxy particles that contribute to surface roughness on ground fibers[17]
圖 5 二次擠壓工藝制備3D打印復合長絲過程.(a)篩分后的玻璃纖維;(b)聚乳酸顆粒;(c)雙螺桿擠出機的擠出過程;(d)玻璃纖維增強顆粒;(e)單螺桿長絲擠出機;(f)回收的玻璃纖維增強長絲和復合拉伸試樣[30]
Figure 5. Double extrusion process for obtaining composite ?laments by three-dimensional printing: (a) last grade of the recyclate; (b) polylactic acid pellets; (c) palletization process with a twin-screw extruder; (d) glass ?ber reinforced pellets; (e) single screw ?lament extruder; (f) recycled glass ?ber reinforced ?laments and composite tensile test specimens[30]
表 1 我國風電機組預計退役情況及葉片報廢量[22]
Table 1. Estimated retired wind generators and turbine blades in China[22]
Retirement peaks Period Estimated retired capacity/GW Estimated retired blades/Mt First peak 2025–2030 44 0.44–0.66 Second peak 2031–2035 100 1.00–1.50 Third peak 2036–2040 118 1.18–1.77 表 2 廢舊葉片纖維增強復合材料不同回收方法的優劣勢[37,39]
Table 2. Advantages and disadvantages of different recycling processes for fiber-reinforced composites obtained from waste wind turbine blades[37,39]
Recycling process Description Advantages Disadvantages Energy consumption Mechanical The composite is broken down by shredding, crushing, milling, or other similar processes. The resulting
material can be separated into resin and ?brous products.Simple,
mature technologyFiber length reduction 0.27–3.03 MJ?kg?1 Thermal
(Pyrolysis)The composite is heated to 450°C–700°C in the absence of oxygen; the polymeric resin is converted into gas or vapor while the fibers remain inert and are later recovered. Fiber length maintenance,
mature technologyFiber mechanical property degradation,
lose polymer matrix3–30 MJ?kg?1 Chemical
(Solvolysis)The polymeric resin is decomposed into oils by chemical solvents, which separate the fibers for collection. Fiber length and mechanical property maintenance,
Recover polymer matrixExpensive to separate solvents,
volatile solvent required63–91 MJ?kg?1 啪啪啪视频 -
參考文獻
[1] Zhou D. Promoting China’s “carbon neutrality” with the transformation of energy structure. Sino Glob Energy, 2022, 27(4): 61舟丹. 以能源結構轉型推動我國實現“碳中和”. 中外能源, 2022, 27(4):61 [2] Liu Y Q, Sun W, Zhu Z S. The impact of carbon market on the low-carbon transition of energy mix and its action path. China Environ Sci, 2022, 42(9): 4369柳亞琴, 孫薇, 朱治雙. 碳市場對能源結構低碳轉型的影響及作用路徑. 中國環境科學, 2022, 42(9):4369 [3] Bp. Bp statistical review of world energy June 2022 [J/OL]. bp p. l. c. (2022-06-26) [2022-10-09]. https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/xlsx/energy-economics/statistical-review/bp-stats-review-2022-all-data.xlsx [4] Ren G R, Wan J, Liu J F, et al. Characterization of wind resource in China from a new perspective. Energy, 2019, 167: 994 doi: 10.1016/j.energy.2018.11.032 [5] Zhu R, Wang Y, Xiang Y, et al. Stydy on climate characteristics and development potential of wind energy resources in China. Acta Energiae Solaris Sin, 2021, 42(6): 409朱蓉, 王陽, 向洋, 等. 中國風能資源氣候特征和開發潛力研究. 太陽能學報, 2021, 42(6):409 [6] China's medium and long-term power generation capacity and electricity demand development forecast. Resources and Habitant Environment, 2013(3): 41我國中長期發電能力和電力需求發展預測. 資源與人居環境. 2013(3):41 [7] Feng Y, Lin H Y, Ho S L, et al. Overview of wind power generation in China: Status and development. Renew Sustain Energy Rev, 2015, 50: 847 doi: 10.1016/j.rser.2015.05.005 [8] Cheng M, Zhu Y. The state of the art of wind energy conversion systems and technologies: A review. Energy Convers Manag, 2014, 88: 332 doi: 10.1016/j.enconman.2014.08.037 [9] Qiao Y H, Han J, Zhang C Y, et al. Experimental tests of active vibration control for flexoelectric/piezoelectric composite wind turbine blade. Acta Energiae Solaris Sin, 2017, 38(9): 2559喬印虎, 韓江, 張春燕, 等. 擾電/壓電復合材料風力機葉片振動主動控制實驗研究. 太陽能學報, 2017, 38(9):2559 [10] Hu B, Wu Y K, Guo Z J, et al. Review of wind turbine blade crack monitoring technology. High Volt Apparatus, 2022, 58(7): 93胡蓓, 吳永康, 郭子君, 等. 風力發電葉片裂縫監測技術綜述. 高壓電器, 2022, 58(7):93 [11] Shi K Z, Zhao X L, Xu J Z. Research on fatigue test of large horizontal axis wind turbine blade. Acta Energiae Solaris Sin, 2011, 32(8): 1264石可重, 趙曉路, 徐建中. 大型風電機組葉片疲勞試驗研究. 太陽能學報, 2011, 32(8):1264 [12] Shen D C. Review of China’s first onshore wind farm. Sol Energy, 2019(2): 35 doi: 10.3969/j.issn.1003-0417.2019.02.007沈德昌. 回望我國第一座陸上風電場. 太陽能, 2019(2):35 doi: 10.3969/j.issn.1003-0417.2019.02.007 [13] Liu S Q, He S, Zhou Y H, et al. Overview of wind turbine blade waste recovery technology. China Resour Compr Util, 2021, 39(11): 109劉勝強, 賀升, 周益輝, 等. 風電葉片廢棄物回收技術綜述. 中國資源綜合利用, 2021, 39(11):109 [14] National Bureau of Statistics. Annual data - electricity balance sheet [J/OL]. National Bureau of Statistics (2022) [2022-10-10]. https://data.stats.gov.cn/easyquery.htm?cn=C01國家統計局. 年度數據-電力平衡表[J/OL]. 國家統計局(2022) [2022-10-10]. https://data.stats.gov.cn/easyquery.htm?cn=C01 [15] China Electricity Council. List of basic data of electricity industry statistics. (2013-04-19) [2022-10-10]. https://cec.org.cn/detail/index.html?3-126869中國電力企業聯合會. 電力工業統計基本數據一覽表. (2013-04-19) [2022-10-10]. https://cec.org.cn/detail/index.html?3-126869 [16] Wind Energy Association of China Renewable Energy Society. Statistical brief report of wind power hoisting capacity in China in 2021. Wind Energy, 2022(5): 38中國可再生能源學會風能專業委員會. 2021年中國風電吊裝容量統計簡報. 風能, 2022(5):38 [17] Tahir M, Rahimizadeh A, Kalman J, et al. Experimental and analytical investigation of 3D printed specimens reinforced by different forms of recyclates from wind turbine waste. Polym Compos, 2021, 42(9): 4533 doi: 10.1002/pc.26166 [18] Ma Z Y. Research on Large-Scale Wind Turbine Blade Structure Design Method [Dissertation]. Beijing: North China Electric Power University, 2011馬志勇. 大型風電葉片結構設計方法研究. 北京:華北電力大學, 2011 [19] Jureczko M, Pawlak M, M??yk A. Optimisation of wind turbine blades. J Mater Process Technol, 2005, 167(2-3): 463 doi: 10.1016/j.jmatprotec.2005.06.055 [20] Hu Y P, Dai J C, Liu D S. Research status and development trend on large scale wind turbine blades. J Mech Eng, 2013, 49(20): 140 doi: 10.3901/JME.2013.20.140胡燕平, 戴巨川, 劉德順. 大型風力機葉片研究現狀與發展趨勢. 機械工程學報, 2013, 49(20):140 doi: 10.3901/JME.2013.20.140 [21] Beauson J, Madsen B, Toncelli C, et al. Recycling of shredded composites from wind turbine blades in new thermoset polymer composites. Compost A, 2016, 90: 390 doi: 10.1016/j.compositesa.2016.07.009 [22] Su N. More difficulties on "large instead of small" of the old wind turbines. China Energy News, 2021, 8蘇南. 老舊風機“以大代小”掣肘多. 中國能源報, 2021, 8 [23] Xu C Y, Ge L C, Feng H C, et al. Review on status of wind power generation and composition and recycling of wind turbine blades. Therm Power Gener, 2022, 51(9): 29許淳瑤, 葛立超, 馮紅翠, 等. 風力發電現狀及葉片組成與回收利用綜述. 熱力發電, 2022, 51(9):29 [24] Paulsen E B, Enevoldsen P. A multidisciplinary review of recycling methods for end-of-life wind turbine blades. Energies, 2021, 14(14): 4247 doi: 10.3390/en14144247 [25] Zhang L L. Where do wind turbine blades go after they are retired? China Building Materials News, 2021, 1張玲玲. 風電葉片退役后何去何從?中國建材報. 2021, 1 [26] Jensen J P. Evaluating the environmental impacts of recycling wind turbines. Wind Energy, 2019, 22(2): 316 doi: 10.1002/we.2287 [27] Wang X P. Using wind turbine blades as alternative raw material and fuel for cement production. Cement, 2021(4): 17王新頻. 風力渦輪機葉片作為水泥生產用替代原燃材料. 水泥, 2021(4):17 [28] Zhang J C, Zhang Q F, Cai H J. Analysis on treatment methods of composite blade wastes of wind turbines. J Mater Sci Eng, 2012, 30(3): 473張建川, 張前峰, 蔡紅軍. 風力發電復合材料葉片廢棄物的幾種處理方法分析. 材料科學與工程學報, 2012, 30(3):473 [29] Rahimizadeh A, Kalman J, Fayazbakhsh K, et al. Mechanical and thermal study of 3D printing composite filaments from wind turbine waste. Polym Compos, 2021, 42(5): 2305 doi: 10.1002/pc.25978 [30] Rahimizadeh A, Kalman J, Henri R, et al. Recycled glass fiber composites from wind turbine waste for 3D printing feedstock: Effects of fiber content and interface on mechanical performance. Materials, 2019, 12(23): 3929 doi: 10.3390/ma12233929 [31] Pender K, Yang L. Regenerating performance of glass fibre recycled from wind turbine blade. Compos B, 2020, 198: 108230 doi: 10.1016/j.compositesb.2020.108230 [32] Moslehi A, Ajji A, Heuzey M C, et al. Polylactic acid/recycled wind turbine glass fiber composites with enhanced mechanical properties and toughness. J Appl Polym Sci, 2022, 139(15): 51934 doi: 10.1002/app.51934 [33] ?kesson D, Foltynowicz Z, Christéen J, et al. Microwave pyrolysis as a method of recycling glass fibre from used blades of wind turbines. J Reinf Plast Compos, 2012, 31(17): 1136 doi: 10.1177/0731684412453512 [34] Lewandowski K, Skórczewska K, Piszczek K, et al. Recycled glass fibres from wind turbines as a filler for poly(vinyl chloride). Adv Polym Technol, 2019, 2019: 1 [35] Mattsson C, André A, Juntikka M, et al. Chemical recycling of End-of-Life wind turbine blades by solvolysis/HTL. IOP Conf Ser:Mater Sci Eng, 2020, 942(1): 012013 doi: 10.1088/1757-899X/942/1/012013 [36] Rani M, Choudhary P, Krishnan V, et al. Development of sustainable microwave-based approach to recover glass fibers for wind turbine blades composite waste. Resour Conserv Recycl, 2022, 179: 106107 doi: 10.1016/j.resconrec.2021.106107 [37] Cousins D S, Suzuki Y, Murray R E, et al. Recycling glass fiber thermoplastic composites from wind turbine blades. J Clean Prod, 2019, 209: 1252 doi: 10.1016/j.jclepro.2018.10.286 [38] Rani M, Choudhary P, Krishnan V, et al. A review on recycling and reuse methods for carbon fiber/glass fiber composites waste from wind turbine blades. Compos B, 2021, 215: 108768 doi: 10.1016/j.compositesb.2021.108768 [39] Cherrington R, Goodship V, Meredith J, et al. Producer responsibility: Defining the incentive for recycling composite wind turbine blades in Europe. Energy Policy, 2012, 47: 13 doi: 10.1016/j.enpol.2012.03.076 [40] Zhou Y W, Weng Y T, Li L M, et al. Recycled GFRP aggregate concrete considering aggregate grading: Compressive behavior and stress–strain modeling. Polymers, 2022, 14(3): 581 doi: 10.3390/polym14030581 [41] Baturkin D, Masmoudi R, Tagnit-Hamou A, et al. Feasibility study on the recycling of FRP materials from wind turbine blades in concrete // 10th International Conference on FRP Composites in Civil Engineering (CICE 2020/2021). Turkey, 2022: 1729 [42] Baturkin D, Hisseine O A, Masmoudi R, et al. Valorization of recycled FRP materials from wind turbine blades in concrete. Resour Conserv Recycl, 2021, 174: 105807 doi: 10.1016/j.resconrec.2021.105807 [43] Yazdanbakhsh A, Bank L C, Rieder K A, et al. Concrete with discrete slender elements from mechanically recycled wind turbine blades. Resour Conserv Recycl, 2018, 128: 11 doi: 10.1016/j.resconrec.2017.08.005 [44] Yazdanbakhsh A, Bank L C, Chen C. Use of recycled FRP reinforcing bar in concrete as coarse aggregate and its impact on the mechanical properties of concrete. Constr Build Mater, 2016, 121: 278 doi: 10.1016/j.conbuildmat.2016.05.165 [45] Haider M M, Nassiri S, Englund K, et al. Exploratory study of flexural performance of mechanically recycled glass fiber reinforced polymer shreds as reinforcement in cement mortar. Transportation Research Record, 2021, 2675(10): 1254 doi: 10.1177/03611981211015246 [46] P?awecka K, Przyby?a J, Korniejenko K, et al. Recycling of mechanically ground wind turbine blades as filler in geopolymer composite. Materials, 2021, 14(21): 6539 doi: 10.3390/ma14216539 [47] Novais R M, Carvalheiras J, Seabra M P, et al. Effective mechanical reinforcement of inorganic polymers using glass fibre waste. J Clean Prod, 2017, 166: 343 doi: 10.1016/j.jclepro.2017.07.242 [48] Joustra J, Flipsen B, Balkenende R. Structural reuse of high end composite products: A design case study on wind turbine blades. Resour Conserv Recycl, 2021, 167: 105393 doi: 10.1016/j.resconrec.2020.105393 [49] André A, Magdalena J, Cecilia M, et al. The re-use of end-of-life fiber reinforced polymer composites in construction // 10th International Conference on FRP Composites in Civil Engineering (CICE 2020/2021). Turkey, 2022: 1183 [50] André A, Kullberg J, Nygren D, et al. Re-use of wind turbine blade for construction and infrastructure applications. IOP Conf Ser:Mater Sci Eng, 2020, 942(1): 012015 doi: 10.1088/1757-899X/942/1/012015 [51] Mishnaevsky Jr L. Sustainable end-of-life management of wind turbine blades: Overview of current and coming solutions. Materials, 2021, 14(5): 1124 doi: 10.3390/ma14051124 [52] Gentry T R, Al-Haddad T, Bank L C, et al. Structural analysis of a roof extracted from a wind turbine blade. J Archit Eng, 2020, 26(4): 04020040 doi: 10.1061/(ASCE)AE.1943-5568.0000440 [53] Bank L C, Arias F R, Gentry T R, et al. Reusing composite materials from decommissioned wind turbine blades // Non-Conventional Materials and Technologies NOCMAT 2017, 2017 [54] Alshannaq A, Bank L C, Scott D, et al. Structural re-use of FRP composite wind turbine blades as power-line utility poles and towers // 10th International Conference on Fibre-Reinforced Polymer (FRP) Composites in Civil Engineering (CICE 2020/2021). Turkey, 2022: 121 -