• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
  • 吳秀永, 徐科, 徐金梧. 基于小波不變矩和保局投影的表面缺陷識別方法[J]. 工程科學學報, 2009, 31(10): 1342-1346. DOI: 10.13374/j.issn1001-053x.2009.10.022
    引用本文: 吳秀永, 徐科, 徐金梧. 基于小波不變矩和保局投影的表面缺陷識別方法[J]. 工程科學學報, 2009, 31(10): 1342-1346. DOI: 10.13374/j.issn1001-053x.2009.10.022
    WU Xiu-yong, XU Ke, XU Jin-wu. Plate surface defect recognition method based on wavelet moment invariant and locality preserving projection[J]. Chinese Journal of Engineering, 2009, 31(10): 1342-1346. DOI: 10.13374/j.issn1001-053x.2009.10.022
    Citation: WU Xiu-yong, XU Ke, XU Jin-wu. Plate surface defect recognition method based on wavelet moment invariant and locality preserving projection[J]. Chinese Journal of Engineering, 2009, 31(10): 1342-1346. DOI: 10.13374/j.issn1001-053x.2009.10.022

    基于小波不變矩和保局投影的表面缺陷識別方法

    Plate surface defect recognition method based on wavelet moment invariant and locality preserving projection

    • 摘要: 提出了一種基于小波矩不變量和保局投影(LPP)的特征提取方法,并應用于中厚板表面缺陷自動識別.首先對圖像做三級小波變分解,將中厚板表面圖像的細節分解到各個尺度的各個分量中并利用小波閾值收縮法降噪;然后對各分量的傅里葉幅值譜提取Hu不變矩作為原始特征向量,并利用LPP將該特征向量的維數從77維降到8維;最后利用AdaBoost分類器對樣本進行分類識別.實驗結果表明,本文提出的特征提取方法適用于中厚板表面缺陷分類,識別率達到91.60%.

       

      Abstract: A feature extraction method based on wavelet moment invariant and locality preserving projection (LPP) was presented and applied to the automatic recognition of plate surface defects. 3-level wavelet decomposition was performed on the surface images, details of the plate surface images were decomposed into components on several scales, and then the noise scattered in detail components of all the scales was reduced by wavelet shrinkage. Moment invariants were extracted from amplitude spectra of all the components, and then the feature vector composed by all the moment invariants was reduced from 77-demension to 8-dimension via LPP. At last, an AdaBoost classifier based on decision trees was constructed to classify the samples. Experimental results demonstrated that the feature extraction method presented in this paper was applicable to the classification of plate surface defects, and the classification rate was 91.60%.

       

    /

    返回文章
    返回
  • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
  • 啪啪啪视频