Research progress and application prospects of the carbonization of biomass materials
-
摘要: 生物質屬于可再生資源,在我國含量豐富,生物質材料炭化后的產物在儲能、吸附等領域得到了廣泛應用. 研究生物質材料的炭化過程,有利于生物質炭的有效利用. 總結了生物質材料炭化過程中,生物質的種類和炭化條件(包括炭化溫度、預處理等)對炭化產物中碳的結構、形態、性質的影響,期望為生物質炭化產物的有效利用提供理論基礎. 同時總結了在催化劑作用下,利用生物質材料炭化來制備碳納米管,并分析了生物質材料中木質素和纖維素等組分對碳納米管制備的影響. 在此基礎上,展望了生物質材料在含碳耐火材料中的應用前景,以期為制備低成本和高性能的新型含碳耐火材料提供思路.Abstract: Biomass is a renewable energy resource with rich content in China. The products of the carbonization of biomass materials have been widely used in energy storage, adsorption materials, and other fields. Studying the carbonization process of biomass materials is crucial for the efficient use of biochar. This article summarizes the effects of biomass types and carbonization conditions (such as carbonization temperature and pretreatment) on the structure, morphology, and properties of carbon in carbonization products. The aim is to provide a theoretical foundation for the effective use of biomass carbonization products. Various biomass materials and biochar can be prepared after treatment. The contents of cellulose, hemicellulose, lignin, and ash in different types of biomass materials vary greatly, and the carbon content, carbon structure, morphology, and properties of the products after carbonization differ. Therefore, selecting appropriate biomass materials based on usage requirements is essential. The carbonization temperature of biomass materials plays an important role in the pyrolysis of biomass. As the carbonization temperature increases, cellulose, hemicellulose, and lignin gradually decompose into gases with small molecules. Furthermore, as the carbonization temperature continues to increase, the internal structure of biomass carbon continues to rearrange, forming a dense aromatic carbon network plane of macromolecules, which increases the graphitization degree of biomass carbon. Additionally, the temperature greatly affects the structure and amount of the products of biomass carbonization. The activation of biomass materials further enhances the specific surface area and adjusts the pore structure of biomass carbon. Chemical activators such as acids, alkalis, and salts are commonly used and have their own advantages and disadvantages. Appropriate activators should be selected by a comprehensive consideration of usage requirements to activate the biomass. This article summarizes the preparation of carbon nanotubes by the carbonization of biomass materials through the template and chemical vapor deposition methods under the action of a catalyst. Further, the influence of components such as lignin and cellulose in biomass materials on the preparation of carbon nanotubes is analyzed. Cellulose in biomass materials has a small molecular weight and is easy to pyrolyze, resulting in gases with smaller molecules. However, lignin has a large molecular weight, is difficult to decompose, and produces less amount of small molecular gas. Therefore, biomass materials with high cellulose content are found to facilitate the preparation of carbon nanotubes. On this basis, the application prospects of biomass materials in carbon-containing refractories have been considered and examined to provide ideas for the preparation of new carbon-containing refractories with low cost and good properties.
-
圖 9 不同活化劑處理椰殼和竹子后制得產物的顯微結構. (a)K2CO3活化椰殼;(b)K2CO3活化竹子;(c)KOH活化椰殼;(d)KOH活化竹子;(e)ZnCl2活化椰殼;(f)ZnCl2活化竹子[30]
Figure 9. Microstructure of products prepared after treating coconut shell and bamboo with different chemical activators: (a) activated coconut shell; (b) K2CO3-activated bamboo; (c) KOH-activated coconut shell; (d) KOH-activated bamboo; (e) ZnCl2-activated coconut shell; (f) ZnCl2-activated bamboo[30]
Biomass type Mass fraction/% Cellulose Hemicellulose Lignin Ash Rice husk 34.4 24.3 19.2 15?20 Corn stalk 39?47 26?31 15?20 12?16 Wheat stalk 37?41 27?32 13?15 11?14 Rice straw 34.2 24.8 18.9 15?25 Corncob 45 35 15 1-3 Coconut shell 53.1 9.8 36.5 0.6 表 2 七種生物質材料的理化性能[19]
Table 2. Physical and chemical properties of seven types of biomass materials[19]
Biomass type Mass fraction/% Volatile matter Ash Solid carbon Camellia pannexterna 15.02 9.73 75.25 Pecan pannexterna 20.13 21.48 58.39 Chestnut pannexterna 14.85 9.66 75.49 Rice straw 14.17 34.16 51.67 China fir 16.38 3.63 80 Pine 12.46 3.27 84.27 Bamboo wood 11.92 5.22 82.86 啪啪啪视频 -
參考文獻
[1] Liu X X. Discussion on agricultural waste treatment and resource utilization. Resour Econ Environ Prot, 2015(10): 19 doi: 10.3969/j.issn.1673-2251.2015.10.026劉曉霞. 淺談農業廢棄物處理與資源化利用. 資源節約與環保, 2015(10):19 doi: 10.3969/j.issn.1673-2251.2015.10.026 [2] Ma X Y, Liu T T, Cui S P, et al. Research progress on preparation and resource utilization of biomass materials. J Beijing Univ Technol, 2020, 46(10): 1204 doi: 10.11936/bjutxb2020050008馬曉宇, 劉婷婷, 崔素萍. 生物質材料的制備及其資源化利用研究進展. 北京工業大學學報, 2020, 46(10):1204 doi: 10.11936/bjutxb2020050008 [3] Lehmann J, Gaunt J, Rondon M. Bio-char sequestration in terrestrial ecosystems?A review. Mitig Adapt Strateg Glob Change, 2006, 11(2): 403 doi: 10.1007/s11027-005-9006-5 [4] Zhang Y, Liu S S, Zheng X Y, et al. Biomass organs control the porosity of their pyrolyzed carbon. Adv Funct Mater, 2017, 27(3): 1604687 doi: 10.1002/adfm.201604687 [5] Tan X Y, Yu C, Ren Y W, et al. Recent advances in innovative strategies for the CO2 electroreduction reaction. Energy Environ Sci, 2021, 14(2): 765 doi: 10.1039/D0EE02981E [6] Yuan H D, Liu T F, Liu Y J, et al. A review of biomass materials for advanced lithium–sulfur batteries. Chem Sci, 2019, 10(32): 7484 doi: 10.1039/C9SC02743B [7] Gunawan T D, Munawar E, Muchtar S. Preparation and characterization of chemically activated adsorbent from the combination of coconut shell and fly ash. Mater Today, 2022, 63: S40 doi: 10.1016/j.matpr.2022.01.023 [8] Neves C V, Módenes A N, Scheufele F B, et al. Dibenzothiophene adsorption onto carbon-based adsorbent produced from the coconut shell: Effect of the functional groups density and textural properties on kinetics and equilibrium. Fuel, 2021, 292: 120354 doi: 10.1016/j.fuel.2021.120354 [9] Tian X K, Chen X Y, Ma C L, et al. Green synthesis of blue-green photoluminescent β-SiC nanowires with core-shell structure using coconut shell as carbon source. Ceram Int, 2022, 48(24): 36273 doi: 10.1016/j.ceramint.2022.08.186 [10] Bourgois J, Guyonnet R. Characterization and analysis of torrefied wood. Wood Sci Technol, 1988, 22(2): 143 doi: 10.1007/BF00355850 [11] Phanphanich M, Mani S. Impact of torrefaction on the grindability and fuel characteristics of forest biomass. Bioresour Technol, 2011, 102(2): 1246 doi: 10.1016/j.biortech.2010.08.028 [12] Felfli F F, Luengo C A, Suárez J A, et al. Wood briquette torrefaction. Energy Sustain Dev, 2005, 9(3): 19 doi: 10.1016/S0973-0826(08)60519-0 [13] Abdullah H, Wu H W. Biochar as a fuel: 1. Properties and grindability of biochars produced from the pyrolysis of mallee wood under slow-heating conditions. Energy Fuels, 2009, 23(8): 4174 [14] Rodríguez A, Moral A, Sánchez R, et al. Influence of variables in the hydrothermal treatment of rice straw on the composition of the resulting fractions. Bioresour Technol, 2009, 100(20): 4863 doi: 10.1016/j.biortech.2009.04.030 [15] Nsimba R Y, Mullen C A, West N M, et al. Structure-property characteristics of pyrolytic lignins derived from fast pyrolysis of a lignin rich biomass extract. ACS Sustainable Chem Eng, 2013, 1(2): 260 doi: 10.1021/sc300119s [16] Deng C J, Ma H H, Wang L C, et al. Structure characterization and pyrolysis properties of apricot shell hemicellulose. Sci Silvae Sin, 2019, 55(1): 74 doi: 10.11707/j.1001-7488.20190109鄧叢靜, 馬歡歡, 王亮才, 等. 杏殼半纖維素的結構表征與熱解產物特性. 林業科學, 2019, 55(1):74 doi: 10.11707/j.1001-7488.20190109 [17] Jiang T D. Lignin. Beijing: Chemical Industry Press, 2001蔣挺大. 木質素. 北京:化學工業出版社, 2001 [18] Liang Y. Study on Preparation of TiO2?SiO2 Composites as Carrier Denitrification Catalytic Materials from Rice Husk Ash [Dissertation]. Beijing: Beijing University of Technology, 2019梁雨. 稻殼灰制備TiO2?SiO2復合載體脫硝催化材料的研究[學位論文]. 北京:北京工業大學, 2019 [19] Zhuang X W, Chen S W, Zhang T Y, et al. Thermal analysis on the combustion characteristics of 7 kinds of biomass charcoals. Chem Ind For Prod, 2009, 29(S1): 169莊曉偉, 陳順偉, 張桃元, 等. 7種生物質炭燃燒特性的分析. 林產化學與工業, 2009, 29(S1):169 [20] Liu Y X. Effects of Biochar Input on Soil Nitrogen Loss and Greenhouse Gas Emission [Dissertation]. Hangzhou: Zhejiang University, 2011劉玉學. 生物質炭輸入對土壤氮素流失及溫室氣體排放特性的影響[學位論文]. 杭州:浙江大學, 2011 [21] He J W, He C X, Guo H Y, et al. Adsorption of methylene blue by five straw biochars and its performance comparison. J Nanjing Agric Univ, 2019, 42(2): 382 doi: 10.7685/jnau.201807039何佳聞, 何春霞, 郭航言, 等. 5種秸稈生物炭吸附亞甲基藍及其性能對比研究. 南京農業大學學報, 2019, 42(2):382 doi: 10.7685/jnau.201807039 [22] Lin X Q, Lv H H, Liu Y X. Effects of biomass and carbonization temperature on biochar yield and characteristics. Acta Agric Zhejiangensis, 2016, 28(7): 1216 doi: 10.3969/j.issn.1004-1524.2016.07.019林肖慶, 呂豪豪, 劉玉學. 生物質原料及炭化溫度對生物炭產率與性質的影響. 浙江農業學報, 2016, 28(7):1216 doi: 10.3969/j.issn.1004-1524.2016.07.019 [23] Guo P, Wang G Z, Xu M, et al. Composition and structural characteristics of biochar derived from biomass waste at different pyrolysis temperatures. J Jilin Univ Sci Ed, 2014, 52(4): 855郭平, 王觀竹, 許夢, 等. 不同熱解溫度下生物質廢棄物制備的生物質炭組成及結構特征. 吉林大學學報(理學版), 2014, 52(4):855 [24] Song S H, Song X Q, Liu J, et al. Study on properties of regenerated biomass charcoal from straw waste. Shandong Chem Ind, 2021, 50(7): 237 doi: 10.3969/j.issn.1008-021X.2021.07.101宋少花, 宋曉喬, 劉瑾, 等. 秸稈廢料再生生物質炭的性能研究. 山東化工, 2021, 50(7):237 doi: 10.3969/j.issn.1008-021X.2021.07.101 [25] Zhao H, Yan H X, Zhang M M, et al. Pyrolysis characteristic and kinetics of marine biomass. Biotechnol Bull, 2010(4): 135趙輝, 閆華曉, 張萌萌, 等. 海洋生物質的熱解特性與動力學研究. 生物技術通報, 2010(4):135 [26] Jiang Z H, Zhang D S, Fei B H, et al. Effects of carbonization temperature on the microstructure and electrical conductivity of bamboo charcoal. N Carbon Mater, 2004, 19(4): 249江澤慧, 張東升, 費本華, 等. 炭化溫度對竹炭微觀結構及電性能的影響. 新型炭材料, 2004, 19(4):249 [27] Li A. Experimental Study on Preparation of Molded Biomass Charcoal by Pyrolysis and Carbonization of Biomass [Dissertation]. Kunming: Kunming University of Science and Technology, 2016李昂. 生物質熱解炭化制備成型生物質炭的實驗研究[學位論文]. 昆明:昆明理工大學, 2016 [28] Shi Y R, Tang Q F, Zhao Y M, et al. Study on preparation of activated carbon from cocoanut shell. Chem Ind For Prod, 1986, 6(2): 23施蔭銳, 唐啟鳳, 趙玉明. 椰子殼制活性炭的研究. 林產化學與工業, 1986, 6(2):23 [29] Li J S, Gao C Q, Wang X, et al. Inorganic activators utilized in development and production of high performance activated carbon. Inorg Chems Ind, 2019, 51(8): 1李建生, 高長青, 王雪, 等. 高性能活性炭開發生產中的無機活化劑. 無機鹽工業, 2019, 51(8):1 [30] Qin Q H, Zhong F, Zhao X L, et al. Effect of different activator on physicochemical properties of activated carbon from biomass. Acta Energiae Solaris Sin, 2022, 43(2): 1 doi: 10.19912/j.0254-0096.tynxb.2020-0240秦千惠, 鐘菲, 趙曉磊, 等. 活化劑種類對生物質活性炭理化特性的影響. 太陽能學報, 2022, 43(2):1 doi: 10.19912/j.0254-0096.tynxb.2020-0240 [31] Du S K. Production of high yield activated carbon from waste biomass by acid treatment method. Carbon, 2008(1): 35 doi: 10.3969/j.issn.1001-8948.2008.01.005杜壽考. 硫酸處理制備高收率生物基多孔炭. 炭素, 2008(1):35 doi: 10.3969/j.issn.1001-8948.2008.01.005 [32] Xiang R L. Study on Pyrolysis Characteristics of Biomass Based on Acid Treatments [Dissertation]. Changsha: Changsha University of Science and Technology, 2019相瑞隆. 基于酸處理的生物質熱解特性的研究[學位論文]. 長沙:長沙理工大學, 2019 [33] Zou Z Y, Zhou J D, Yang Y Q, et al. Key technology and application status of biomass activated carbon preparation. J Chengdu Text Coll, 2016, 33(2): 53 doi: 10.3969/j.issn.1008-5580.2016.02.011鄒專勇, 周建迪, 楊艷秋, 等. 生物質活性炭制備關鍵技術與應用現狀. 紡織科學與工程學報, 2016, 33(2):53 doi: 10.3969/j.issn.1008-5580.2016.02.011 [34] Lian P. Zhang X F. Research progress in preparation methods of carbon nanotubes. Contemp Chem Ind, 2015, 44(4): 737 doi: 10.3969/j.issn.1671-0460.2015.04.025練澎, 張小鳳. 碳納米管制備方法的研究進展. 當代化工, 2015, 44(4):737 doi: 10.3969/j.issn.1671-0460.2015.04.025 [35] Jeong S H, Hwang H Y, Lee K H, et al. Template-based carbon nanotubes and their application to a field emitter. Appl Phys Lett, 2001, 78(14): 2052 doi: 10.1063/1.1359483 [36] Liang H. Synthesis and Characterization of Biomass-Based Carbon Nanotubes [Dissertation]. Dalian: Liaoning Normal University, 2014梁昊. 生物質基碳納米管的合成與表征[學位論文]. 大連:遼寧師范大學, 2014 [37] Bai J P. Design, Synthesis and Characterization of Biomass Based Carbon Nanotubes Composite Functional Materials [Dissertation]. Dalian: Liaoning Normal University, 2016白金鵬. 生物質基碳納米管復合功能材料的設計合成與表征[學位論文]. 大連:遼寧師范大學, 2016 [38] Wang J K. In-situ Catalytic Preparation Mechanism of Carbon Nanotubes/SiC and their Application in MgO–C Refractory [Dissertation]. Wuhan: Wuhan University of Science and Technology, 2018王軍凱. 碳納米管/碳化硅原位催化制備、機理及其在MgO–C材料中的應用[學位論文]. 武漢:武漢科技大學, 2018 [39] Wu L T. Technical Research on the Preparation of Carbon Materials from Cellulose by Carbonization at High Temperature [Dissertation]. Taiyuan: Taiyuan University of Technology, 2015武琳婷. 纖維素炭化制備碳材料的工藝研究[學位論文]. 太原:太原理工大學, 2015 [40] Shen X C. Synthesis of Carbon Nanotubes by Biomass Pyrolysis Gas and their Application in Pollutant Removal [Dissertation]. Hefei: University of Science and Technology of China, 2018沈賢城. 生物質熱解氣合成碳納米管及其在污染物去除中的應用研究[學位論文]. 合肥:中國科學技術大學, 2018 [41] Shi X Y. Separation of Three Components of Lignocellulose and Preparation of Carbon Nanotubes [Dissertation]. Beijing: Beijing University of Chemical Technology, 2020史曉悠. 木質纖維素三種組分的分離及碳納米管的制備[學位論文]. 北京:北京化工大學, 2020 [42] Melati A, Hidayati E. Synthesis and characterization of carbon nanotube from coconut shells activated carbon. J Phys:Conf Ser, 2016, 694(1): 012073 -