-
摘要: 研究了AlSi10Sn4Mgx (x為質量分數0~4.0%)合金的力學性能與阻尼性能,并從Mg對Al/Sn潤濕性、Mg對合金組織的影響等方面分析了阻尼和力學性能提高機制. 力學性能測試結果表明,當Mg質量分數為0~1.0%時,試樣的抗拉強度隨著Mg含量的增加而提高、斷后伸長率變化較小,Mg質量分數為1.0%試樣的抗拉強度為161 MPa、斷后伸長率為3.4%;繼續增加Mg含量,試樣的抗拉強度顯著提高,但斷后伸長率明顯降低. 試樣的阻尼性能隨Mg含量的增加先提高后降低,Mg質量分數為1.0%試樣的阻尼性能較高,且具有良好的高溫和高頻阻尼性能,25 ℃/1 Hz、200 ℃/1 Hz和25 ℃/40 Hz條件下阻尼損耗因子tanh分別達到0.038、0.058和0.069. 少量Mg的加入使Al/Sn潤濕性明顯提高,促使β-Sn相沿晶界呈細小彌散分布;同時,少量的Mg使AlSi10Sn4Mgx中的共晶Si相變質球化,并生成Mg2Si強化相,是合金阻尼和力學性能提高的主要原因.Abstract: Damping alloys serve as key materials in the domain of shock and noise reduction and find wide-ranging applications across several industries. Aluminum alloy, a commonly used engineering material, offers distinct advantages such as low cost and light weight. However, the damping property of aluminum alloy falls short of requisite standards. Thus, efforts toward enhancing the damping and mechanical properties of cast aluminum alloy carry considerable engineering implications. In this paper, the mechanical and damping properties of AlSi10Sn4Mgx (x mass fraction is 0–4.0%) alloy have been investigated, and the mechanisms underlying the enhancement of the damping and mechanical properties have been analyzed by examining the effect of Mg on the wettability of Al/Sn and the alloy’s structure. The results of the mechanical property test reveal that the tensile strength of the AlSi10Sn4Mgx alloy increases proportionally with Mg mass fraction within the range of 0% to 1.0%, whereas the fracture elongation undergoes a negligible change. With the Mg mass fraction rising to 1.0%, the tensile strength of the alloy reaches 161 MPa, and the fracture elongation stands at 3.4%. Subsequent increases in Mg content lead to remarkable enhancements in the strength of the samples. When the Mg mass fraction increases to 1.5%, the tensile strength of the alloy stands at 188 MPa, albeit with a remarkable decrease in fracture elongation. The damping properties of the alloy initially increase and subsequently decrease with the increase in Mg mass fraction. The alloy containing 1.0% Mg displays excellent damping properties at high temperatures and high frequencies. Specifically, the damping loss factor tanh at 25 ℃/1 Hz, 200 ℃/1 Hz and 25 ℃/40 Hz measures 0.038, 0.058, and 0.069, respectively. Further research suggests that the addition of a small amount of Mg can effectively improve the wettability of Al/Sn. The mean wetting angles of AlSi10 and AlSi10Mg1 alloy samples with pure Sn are 141.2° and 116.8°, respectively. The exceptional wettability of Al/Sn facilitates the distribution of the small-sized β-Sn phase along grain boundaries within the AlSi10Sn4Mgx alloy. Meanwhile, a small amount of Mg can also modify and spheroidize the eutectic Si phase in AlSi10Sn4Mgx alloys, leading to the formation of the Mg2Si strengthened phase. These two factors are primarily responsible for the excellent damping and mechanical properties of the alloy. However, excessive Mg will generate bulky Mg2Si structures, which will impair the wettability of Al/Sn, leading to the deterioration of the damping and mechanical properties of AlSi10Sn4Mg4 alloy.
-
Key words:
- cast aluminum alloy /
- β-Sn /
- Mg microalloying /
- damping property /
- mechanical property
-
表 1 AlSi10試樣成分(質量分數)
Table 1. Composition of AlSi10 alloy
% Si Mg Sn Mn Cu Fe Al 9.94 0.0243 <0.02 0.159 0.029 0.63 Bal. 表 2 各合金試樣的實際Mg與Sn的質量分數
Table 2. Actual Mg and Sn mass fraction of the alloy samples
% Element AlSi10Sn4 AlSi10Sn4Mg0.5 AlSi10Sn4Mg1 AlSi10Sn4Mg1.5 AlSi10Sn4Mg4 AlSi10Mg1 AlSi10Mg4 Mg <0.02 0.40 0.96 1.54 3.88 1.07 3.93 Sn 3.86 3.90 3.93 3.95 3.85 <0.02 <0.02 表 3 各點成分掃描結果(質量分數)
Table 3. Composition scanning result of each point
% Element Point 1 Point 2 Point 3 Point 4 Point 5 Point 6 Point 7 Al 5.59 25.92 15.54 0.49 39.22 5.25 16.86 Si 2.13 72.37 84.25 4.07 60.30 3.78 53.70 Sn 92.27 1.65 0.20 65.14 0.40 64.40 0.10 Mg 0.01 0.06 0.01 30.30 0.08 26.57 29.34 表 4 鋁合金及鋁鋅合金的制備方法、阻尼(25 ℃/1 Hz)及力學性能比較
Table 4. Preparation method, room-temperature damping factor (25 ℃/1 Hz), and mechanical properties of some aluminum alloys and Al–Zn alloys
啪啪啪视频 -
參考文獻
[1] Li G C, Ma Y, He X L, et al. Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process. Trans Nonferrous Met Soc China, 2012, 22(5): 1112 doi: 10.1016/S1003-6326(11)61291-0 [2] Emadoddin E, Tajally M, Masoumi M. Damping behavior of Al/SiCP multilayer composite manufactured by roll bonding. Mater Des, 2012, 42: 334 doi: 10.1016/j.matdes.2012.06.009 [3] Huang W Z, Luo H J, Mu Y L, et al. Low-frequency damping behavior of closed-cell Mg alloy foams reinforced with SiC particles. Int J Miner Metall Mater, 2017, 24(6): 701 doi: 10.1007/s12613-017-1453-y [4] Zheng W, Gao Y X, Wang X P, et al. High strength and damping capacity of LLZNO/Al composites fabricated by accumulative roll bonding. Mater Sci Eng A, 2017, 689: 306 doi: 10.1016/j.msea.2017.02.074 [5] Jiang H J, Liu C Y, Ma Z Y, et al. Fabrication of Al–35Zn alloys with excellent damping capacity and mechanical properties. J Alloys Compd, 2017, 722: 138 doi: 10.1016/j.jallcom.2017.06.091 [6] Zhang Z H, Xiao F, Wang Y W, et al. Mechanism of improving strength and damping properties of powder-extruded Al/Zn composite after diffusion annealing. Trans Nonferrous Met Soc China, 2018, 28(10): 1928 doi: 10.1016/S1003-6326(18)64838-1 [7] Wang L Z, Liu Y, Wu J J, et al. Mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering. Int J Miner Metall Mater, 2017, 24(5): 584 doi: 10.1007/s12613-017-1440-3 [8] Wu S Y. Research and Application of Metal Elastic Materials. Beijing: Metallurgical Industry Press, 2018吳淑媛. 金屬彈性材料研究及應用. 北京:冶金工業出版社, 2018 [9] Geng Y X, Tang H, Xu J H, et al. Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting. Int J Miner Metall Mater, 2022, 29(9): 1770 doi: 10.1007/s12613-021-2287-1 [10] Li Z Z, Yan H G, Chen J H, et al. Effect of Mg content on the damping behavior of Al–Mg alloys. Met Mater Int, 2021, 27(9): 3155 doi: 10.1007/s12540-020-00695-9 [11] Zhou H H, Yang N Y, Zhang Z H. Effect of rare earth La and Sn on structure, mechanical and damping properties of cast aluminum alloy. Rare Met Mater Eng, 2021, 50(3): 932周慧慧, 楊寧源, 張志豪. 稀土La及Sn對鑄造鋁合金組織、力學和阻尼性能的影響. 稀有金屬材料與工程, 2021, 50(3):932 [12] Sharifi H, Khavandi A R, Divandari M, et al. Effect of magnesium and nickel coatings on the wetting behavior of alumina toughened zirconia by molten Al–Mg alloy. Int J Miner Metall Mater, 2012, 19(1): 77 doi: 10.1007/s12613-012-0518-1 [13] Yu Y N, Yang P, Qiang W J, et al. Fundamentals of Materials Science. Beijing: Higher Education Press, 2012余永寧, 楊平, 強文江, 等. 材料科學基礎. 北京:高等教育出版社, 2012 [14] Lu Z C, Gao Y, Zeng M Q, et al. Improving wear performance of dual-scale Al–Sn alloys: The role of Mg addition in enhancing Sn distribution and tribolayer stability. Wear, 2014, 309(1-2): 216 doi: 10.1016/j.wear.2013.11.018 [15] Hu H Q. Principle of Metal Solidification. 2nd ed. Beijing: China Machine Press, 2000胡漢起. 金屬凝固原理. 2版. 北京:機械工業出版社, 2000 [16] Cahn J W. The kinetics of grain boundary nucleated reactions. Acta Metall, 1956, 4(5): 449 doi: 10.1016/0001-6160(56)90041-4 [17] Ju J W, Chen T M. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech, 1994, 103(1): 123 [18] Kim J H, Jung J M, Shim H. Tensile properties and damping capacity of cold-rolled Fe–20Mn–12Cr–3Ni–3Si damping alloy. Materials,https://doi.org/10.3390/ma14205975 [19] Wang H, Wang F, Liu H T, et al. Influence of alloy elements (Mo, Nb, Ti) on the strength and damping capacity of Fe–Cr based alloy. Mater Sci Eng A, 2016, 667: 326 doi: 10.1016/j.msea.2016.05.013 [20] Chen Z W, Ma C Y, Chen P. Modifying agent selection for Al–7Si alloy by Miedema model. Int J Miner Metall Mater, 2012, 19(2): 131 doi: 10.1007/s12613-012-0527-0 [21] Huang X F, Feng K, Xie R. Effects of Mg and Mn element on microstructure and mechanical properties of Al–Si alloy. Chin J Nonferrous Met, 2012, 22(8): 2196 doi: 10.19476/j.ysxb.1004.0609.2012.08.008黃曉鋒, 馮凱, 謝銳. Mg及Mn元素對Al-Si合金顯微組織和力學性能的影響. 中國有色金屬學報, 2012, 22(8):2196 doi: 10.19476/j.ysxb.1004.0609.2012.08.008 [22] Peng H P, Li Z W, Zhu J Q, et al. Microstructure and mechanical properties of Al–Si alloy modified with Al–3P. Trans Nonferrous Met Soc China, 2020, 30(3): 595 doi: 10.1016/S1003-6326(20)65238-4 [23] Li X, Xie H, Yang B, et al. Elastic and thermodynamic properties prediction of Mg2Sn and MgTe by first-principle calculation and quasi-harmonic Debye model. J Electron Mater, 2020, 49(1): 464 doi: 10.1007/s11664-019-07682-w [24] Wu X F, Wang Y, Wang K Y, et al. Enhanced mechanical properties of hypoeutectic Al–10Mg2Si cast alloys by Bi addition. J Alloys Compd, 2018, 767: 163 doi: 10.1016/j.jallcom.2018.07.070 [25] Alaneme K K, Jafaar L, Bodunrin M O. Structural characteristics, mechanical behaviour and damping properties of Ni modified high zinc Al–Zn alloys. Mater Res Express, https://doi.org/10.1088/2053-1591/ab42a4 [26] Jiang H J, Liu C Y, Yang Z X, et al. Effect of friction stir processing on the microstructure, damping capacity, and mechanical properties of Al–Si alloy. J Materi Eng Perform, 2019, 28(2): 1173 doi: 10.1007/s11665-018-3844-2 -