• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
    • 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    Mg含量對AlSi10Sn4Mgx合金阻尼和力學性能的影響

    許吉 王志磊 趙帆 張志豪

    許吉, 王志磊, 趙帆, 張志豪. Mg含量對AlSi10Sn4Mgx合金阻尼和力學性能的影響[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.11.07.001
    引用本文: 許吉, 王志磊, 趙帆, 張志豪. Mg含量對AlSi10Sn4Mgx合金阻尼和力學性能的影響[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.11.07.001
    XU Ji, WANG Zhilei, ZHAO Fan, ZHANG Zhihao. Effect of Mg content on damping and mechanical properties of AlSi10Sn4Mgx alloy[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.07.001
    Citation: XU Ji, WANG Zhilei, ZHAO Fan, ZHANG Zhihao. Effect of Mg content on damping and mechanical properties of AlSi10Sn4Mgx alloy[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.07.001

    Mg含量對AlSi10Sn4Mgx合金阻尼和力學性能的影響

    doi: 10.13374/j.issn2095-9389.2022.11.07.001
    基金項目: 佛山市核心技術攻關資助項目(1920001000409)
    詳細信息
      通訊作者:

      E-mail: ntzzh2279@163.com

    • 中圖分類號: TG146.21

    Effect of Mg content on damping and mechanical properties of AlSi10Sn4Mgx alloy

    More Information
    • 摘要: 研究了AlSi10Sn4Mgx (x為質量分數0~4.0%)合金的力學性能與阻尼性能,并從Mg對Al/Sn潤濕性、Mg對合金組織的影響等方面分析了阻尼和力學性能提高機制. 力學性能測試結果表明,當Mg質量分數為0~1.0%時,試樣的抗拉強度隨著Mg含量的增加而提高、斷后伸長率變化較小,Mg質量分數為1.0%試樣的抗拉強度為161 MPa、斷后伸長率為3.4%;繼續增加Mg含量,試樣的抗拉強度顯著提高,但斷后伸長率明顯降低. 試樣的阻尼性能隨Mg含量的增加先提高后降低,Mg質量分數為1.0%試樣的阻尼性能較高,且具有良好的高溫和高頻阻尼性能,25 ℃/1 Hz、200 ℃/1 Hz和25 ℃/40 Hz條件下阻尼損耗因子tanh分別達到0.038、0.058和0.069. 少量Mg的加入使Al/Sn潤濕性明顯提高,促使β-Sn相沿晶界呈細小彌散分布;同時,少量的Mg使AlSi10Sn4Mgx中的共晶Si相變質球化,并生成Mg2Si強化相,是合金阻尼和力學性能提高的主要原因.

       

    • 圖  1  不同Mg含量AlSi10Sn4Mgx試樣的金相組織. (a) 0% Mg; (b) 1.0% Mg; (c) 1.5% Mg; (d) 4.0% Mg

      Figure  1.  Metallographic structure of AlSi10Sn4Mgx alloys with different Mg mass fractions: (a) 0% Mg; (b) 1.0% Mg; (c) 1.5% Mg; (d) 4.0% Mg

      圖  2  AlSi10Sn4Mgx合金的EDS圖譜. (a) AlSi10Sn4; (b) AlSi10Sn4Mg1; (c) AlSi10Sn4Mg4

      Figure  2.  EDS patterns of AlSi10Sn4Mgx alloys: (a) AlSi10Sn4; (b) AlSi10Sn4Mg1; (c) AlSi10Sn4Mg4

      圖  3  AlSi10Sn4Mgx試樣的XRD圖譜

      Figure  3.  XRD patterns of AlSi10Sn4Mgx alloys

      圖  4  AlSi10與AlSi10Sn4Mgx試樣的拉伸力學性能. (a) 應力–應變曲線; (b) 抗拉強度與斷后伸長率

      Figure  4.  Stretching mechanical properties of AlSi10 and AlSi10Sn4Mgx alloys: (a) stress–strain curves; (b) tensile strength and fracture elongation

      圖  5  AlSi10和AlSi10Sn4Mgx試樣的阻尼性能曲線. (a) 溫度–阻尼曲線(1 Hz); (b) 頻率–阻尼曲線(25 ℃)

      Figure  5.  Damping property curves of AlSi10 and AlSi10Sn4Mgx alloys: (a) temperature dependence of damping property (1 Hz); (b) frequency dependence of damping property (25 ℃)

      圖  6  AlSi10和AlSi10Sn4Mgx試樣的阻尼性能對比. (a) 不同溫度阻尼性能; (b) 不同頻率阻尼性能

      Figure  6.  Damping property comparison of AlSi10 and AlSi10Sn4Mgx alloys: (a) different temperatures; (b) different frequencies

      圖  7  純Sn在鋁合金基體上的潤濕過程. (a) AlSi10; (b) AlSi10Mg1; (c) AlSi10Mg4

      Figure  7.  Wetting process of pure Sn on aluminum alloy matrix: (a) AlSi10; (b) AlSi10Mg1; (c) AlSi10Mg4

      圖  8  AlSi10Sn4Mgx試樣中的β-Sn相形貌. (a) AlSi10Sn4; (b) AlSi10Sn4Mg1

      Figure  8.  β-Sn morphology of AlSi10Sn4Mgx alloys: (a) AlSi10Sn4; (b) AlSi10Sn4Mg1

      圖  9  Sn元素在AlSi10Sn4Mgx試樣中的分布情況. (a, c) AlSi10Sn4; (b, d) AlSi10Sn4Mg1

      Figure  9.  Sn element distribution on AlSi10Sn4Mgx alloys: (a, c) AlSi10Sn4; (b, d) AlSi10Sn4Mg1

      圖  10  AlSi10Sn4Mgx合金組織. (a) AlSi10Sn4; (b) AlSi10Sn4Mg1; (c) AlSi10Sn4Mg1.5; (d) AlSi10Sn4Mg4

      Figure  10.  Microstructure of AlSi10Sn4Mgx alloys: (a) AlSi10Sn4; (b) AlSi10Sn4Mg1; (c) AlSi10Sn4Mg1.5; (d) AlSi10Sn4Mg4

      表  1  AlSi10試樣成分(質量分數)

      Table  1.   Composition of AlSi10 alloy %

      SiMgSnMnCuFeAl
      9.940.0243<0.020.1590.0290.63Bal.
      下載: 導出CSV

      表  2  各合金試樣的實際Mg與Sn的質量分數

      Table  2.   Actual Mg and Sn mass fraction of the alloy samples %

      ElementAlSi10Sn4AlSi10Sn4Mg0.5AlSi10Sn4Mg1AlSi10Sn4Mg1.5AlSi10Sn4Mg4AlSi10Mg1AlSi10Mg4
      Mg<0.020.400.961.543.881.073.93
      Sn3.863.903.933.953.85<0.02<0.02
      下載: 導出CSV

      表  3  各點成分掃描結果(質量分數)

      Table  3.   Composition scanning result of each point %

      ElementPoint 1Point 2Point 3Point 4Point 5Point 6Point 7
      Al5.5925.9215.540.4939.225.2516.86
      Si2.1372.3784.254.0760.303.7853.70
      Sn92.271.650.2065.140.4064.400.10
      Mg0.010.060.0130.300.0826.5729.34
      下載: 導出CSV

      表  4  鋁合金及鋁鋅合金的制備方法、阻尼(25 ℃/1 Hz)及力學性能比較

      Table  4.   Preparation method, room-temperature damping factor (25 ℃/1 Hz), and mechanical properties of some aluminum alloys and Al–Zn alloys

      MaterialsMethodsTensile strength /MPaFracture elongation/ %tanhReference
      Al–35ZnCasting1787.90.018[25]
      Al–12SiCasting + solution treatment1201.40.017[26]
      Al–4.5MgCasting + homogenizing + quenching~232~3.1~0.0015[10]
      AlSi10Sn4Mg1Casting1613.40.038Present work
      AlSi10Sn4Mg1.5Casting1882.50.033Present work
      下載: 導出CSV
    • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <table id="y4y0w"><option id="y4y0w"></option></table>
    • <li id="y4y0w"></li>
      <noscript id="y4y0w"></noscript>
      <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
      <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <menu id="y4y0w"></menu>
      <table id="y4y0w"><rt id="y4y0w"></rt></table>
    啪啪啪视频
  • [1] Li G C, Ma Y, He X L, et al. Damping capacity of high strength-damping aluminum alloys prepared by rapid solidification and powder metallurgy process. Trans Nonferrous Met Soc China, 2012, 22(5): 1112 doi: 10.1016/S1003-6326(11)61291-0
    [2] Emadoddin E, Tajally M, Masoumi M. Damping behavior of Al/SiCP multilayer composite manufactured by roll bonding. Mater Des, 2012, 42: 334 doi: 10.1016/j.matdes.2012.06.009
    [3] Huang W Z, Luo H J, Mu Y L, et al. Low-frequency damping behavior of closed-cell Mg alloy foams reinforced with SiC particles. Int J Miner Metall Mater, 2017, 24(6): 701 doi: 10.1007/s12613-017-1453-y
    [4] Zheng W, Gao Y X, Wang X P, et al. High strength and damping capacity of LLZNO/Al composites fabricated by accumulative roll bonding. Mater Sci Eng A, 2017, 689: 306 doi: 10.1016/j.msea.2017.02.074
    [5] Jiang H J, Liu C Y, Ma Z Y, et al. Fabrication of Al–35Zn alloys with excellent damping capacity and mechanical properties. J Alloys Compd, 2017, 722: 138 doi: 10.1016/j.jallcom.2017.06.091
    [6] Zhang Z H, Xiao F, Wang Y W, et al. Mechanism of improving strength and damping properties of powder-extruded Al/Zn composite after diffusion annealing. Trans Nonferrous Met Soc China, 2018, 28(10): 1928 doi: 10.1016/S1003-6326(18)64838-1
    [7] Wang L Z, Liu Y, Wu J J, et al. Mechanical properties and friction behaviors of CNT/AlSi10Mg composites produced by spark plasma sintering. Int J Miner Metall Mater, 2017, 24(5): 584 doi: 10.1007/s12613-017-1440-3
    [8] Wu S Y. Research and Application of Metal Elastic Materials. Beijing: Metallurgical Industry Press, 2018

    吳淑媛. 金屬彈性材料研究及應用. 北京:冶金工業出版社, 2018
    [9] Geng Y X, Tang H, Xu J H, et al. Influence of process parameters and aging treatment on the microstructure and mechanical properties of AlSi8Mg3 alloy fabricated by selective laser melting. Int J Miner Metall Mater, 2022, 29(9): 1770 doi: 10.1007/s12613-021-2287-1
    [10] Li Z Z, Yan H G, Chen J H, et al. Effect of Mg content on the damping behavior of Al–Mg alloys. Met Mater Int, 2021, 27(9): 3155 doi: 10.1007/s12540-020-00695-9
    [11] Zhou H H, Yang N Y, Zhang Z H. Effect of rare earth La and Sn on structure, mechanical and damping properties of cast aluminum alloy. Rare Met Mater Eng, 2021, 50(3): 932

    周慧慧, 楊寧源, 張志豪. 稀土La及Sn對鑄造鋁合金組織、力學和阻尼性能的影響. 稀有金屬材料與工程, 2021, 50(3):932
    [12] Sharifi H, Khavandi A R, Divandari M, et al. Effect of magnesium and nickel coatings on the wetting behavior of alumina toughened zirconia by molten Al–Mg alloy. Int J Miner Metall Mater, 2012, 19(1): 77 doi: 10.1007/s12613-012-0518-1
    [13] Yu Y N, Yang P, Qiang W J, et al. Fundamentals of Materials Science. Beijing: Higher Education Press, 2012

    余永寧, 楊平, 強文江, 等. 材料科學基礎. 北京:高等教育出版社, 2012
    [14] Lu Z C, Gao Y, Zeng M Q, et al. Improving wear performance of dual-scale Al–Sn alloys: The role of Mg addition in enhancing Sn distribution and tribolayer stability. Wear, 2014, 309(1-2): 216 doi: 10.1016/j.wear.2013.11.018
    [15] Hu H Q. Principle of Metal Solidification. 2nd ed. Beijing: China Machine Press, 2000

    胡漢起. 金屬凝固原理. 2版. 北京:機械工業出版社, 2000
    [16] Cahn J W. The kinetics of grain boundary nucleated reactions. Acta Metall, 1956, 4(5): 449 doi: 10.1016/0001-6160(56)90041-4
    [17] Ju J W, Chen T M. Effective elastic moduli of two-phase composites containing randomly dispersed spherical inhomogeneities. Acta Mech, 1994, 103(1): 123
    [18] Kim J H, Jung J M, Shim H. Tensile properties and damping capacity of cold-rolled Fe–20Mn–12Cr–3Ni–3Si damping alloy. Materials,https://doi.org/10.3390/ma14205975
    [19] Wang H, Wang F, Liu H T, et al. Influence of alloy elements (Mo, Nb, Ti) on the strength and damping capacity of Fe–Cr based alloy. Mater Sci Eng A, 2016, 667: 326 doi: 10.1016/j.msea.2016.05.013
    [20] Chen Z W, Ma C Y, Chen P. Modifying agent selection for Al–7Si alloy by Miedema model. Int J Miner Metall Mater, 2012, 19(2): 131 doi: 10.1007/s12613-012-0527-0
    [21] Huang X F, Feng K, Xie R. Effects of Mg and Mn element on microstructure and mechanical properties of Al–Si alloy. Chin J Nonferrous Met, 2012, 22(8): 2196 doi: 10.19476/j.ysxb.1004.0609.2012.08.008

    黃曉鋒, 馮凱, 謝銳. Mg及Mn元素對Al-Si合金顯微組織和力學性能的影響. 中國有色金屬學報, 2012, 22(8):2196 doi: 10.19476/j.ysxb.1004.0609.2012.08.008
    [22] Peng H P, Li Z W, Zhu J Q, et al. Microstructure and mechanical properties of Al–Si alloy modified with Al–3P. Trans Nonferrous Met Soc China, 2020, 30(3): 595 doi: 10.1016/S1003-6326(20)65238-4
    [23] Li X, Xie H, Yang B, et al. Elastic and thermodynamic properties prediction of Mg2Sn and MgTe by first-principle calculation and quasi-harmonic Debye model. J Electron Mater, 2020, 49(1): 464 doi: 10.1007/s11664-019-07682-w
    [24] Wu X F, Wang Y, Wang K Y, et al. Enhanced mechanical properties of hypoeutectic Al–10Mg2Si cast alloys by Bi addition. J Alloys Compd, 2018, 767: 163 doi: 10.1016/j.jallcom.2018.07.070
    [25] Alaneme K K, Jafaar L, Bodunrin M O. Structural characteristics, mechanical behaviour and damping properties of Ni modified high zinc Al–Zn alloys. Mater Res Express, https://doi.org/10.1088/2053-1591/ab42a4
    [26] Jiang H J, Liu C Y, Yang Z X, et al. Effect of friction stir processing on the microstructure, damping capacity, and mechanical properties of Al–Si alloy. J Materi Eng Perform, 2019, 28(2): 1173 doi: 10.1007/s11665-018-3844-2
  • 加載中
  • 圖(10) / 表(4)
    計量
    • 文章訪問數:  193
    • HTML全文瀏覽量:  20
    • PDF下載量:  44
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-11-07
    • 網絡出版日期:  2022-12-14

    目錄

      /

      返回文章
      返回