Experimental and numerical studies on gas pressure–induced deformation and failure of unsaturated soil
-
摘要: 覆土填埋是處理城市垃圾的主要手段之一,但垃圾中的有機質在降解時會生成大量氣體,若產氣速率過快或導排不順,內部將產生過高的氣壓,導致土質覆蓋層發生變形破壞,進而影響填埋場的穩定性. 基于此,開展氣壓誘導非飽和土破壞的二維模型試驗和數值模擬,研究不同土體厚度、氣壓條件下的土體變形破壞機制. 結果表明,氣壓誘發土體破壞的過程可分為水氣運移、局部微裂縫、貫穿主裂縫和內部空洞四個階段. 土體破環主要發生在充氣孔上方與表層之間的倒三角區域內,其破壞形態根據是否有前期氣壓作用可分為“劈裂型”與“爆裂型”兩種. 土體的破壞壓力隨覆土厚度的增加近似線性增大,適當的氣壓有利于增加土體的穩定性,在此基礎上提出臨界穩定氣壓的概念. 通過提出的數值模擬方法研究了土體內部的滲流變化規律,發現氣壓會增加土體內部的孔隙壓力,同時會驅使水向四周擴散,導致周圍土體的飽和度發生變化;最后,研究結果表明有效應力增量的區域性變化可能是臨界穩定氣壓產生的原因,可為實際工程提供參考.Abstract: Earth-cover landfills are one of the primary means of treating urban garbage. However, the organic matter in the garbage generates a large amount of gas upon degradation. The internal gas pressure will be substantially high if the gas generation rate is considerably high or if the gas drainage is not smooth, resulting in the deformation and destruction of the soil cover, thus affecting the stability of the landfill. Accordingly, a plane model test of gas pressure-induced failure of unsaturated soil was performed using a self-designed test device, and the deformation and failure mechanisms of soil under different soil thicknesses and gas pressures were comparably studied through numerical simulation. The results revealed that the process of soil damage induced by gas pressure can be divided into four stages—water and gas migration, local micro crack generation, main crack penetration, and internal cavity formation; Soil damage mainly occurs in the inverted triangle area between the top of the inflatable hole and the surface layer. The soil failure modes can be divided into two types—splitting and burst failure—depending on whether there was a previous gas-pressure effect. The failure pressure of soil increases in an approximately linear fashion with an increase in the thickness of the overlying soil. Accordingly, the concept of failure stress ratio was proposed, and it was observed that the failure stress ratio of each soil layer thickness can be approximately regarded as a constant, which has a certain importance for monitoring the landfill overburden in practical engineering. Additionally, the test results revealed that appropriate gas pressure is conducive to increasing the stability of soil mass; the soil mass will gradually become unstable if gas pressure exceeds a certain value, based on which the concept of critical stable gas pressure was proposed. Furthermore, the proposed numerical simulation method was used to establish a corresponding two-dimensional numerical model with reference to the model test. The numerical results, including the fracture propagation pattern and failure pressure results, were consistent with the model test results. On this basis, the seepage variation law within the soil mass was deeply studied. It was observed that the gas pressure increases the pore pressure inside the soil while driving the water to diffuse around, causing changes in the saturation of the surrounding soil. Finally, the simulation results revealed that regional change of effective stress increment may be the cause of critical stable gas pressure, providing a reference for practical engineering.
-
Key words:
- model test /
- gas pressure /
- unsaturated soil /
- water & gas migration /
- two-phase flow
-
表 1 土體材料參數
Table 1. Soil material parameters
Parameter Value Bulk modulus /Pa 1.33×107 Shear modulus /Pa 8×106 Porosity 0.4 Soil density /(kg·m?3) 1600 Cohesion /Pa 0 Friction angle / (°) 31.88 表 2 模型試驗方案
Table 2. Model test scheme
Test groups Number d/cm Loading form of gas pressure
A1 10 Gradually increase 2 15 Gradually increase 3 20 Gradually increase
B4 20 After 20 minutes of 10 kPa gas pressure, then gradually increase 5 20 After 20 minutes of 20 kPa gas pressure, then gradually increase 6 20 After 20 minutes of 30 kPa gas pressure, then gradually increase 7 20 After 20 minutes of 40 kPa gas pressure, then gradually increase 8 20 After 20 minutes of 50 kPa gas pressure, then gradually increase 9 20 After 20 minutes of 60 kPa gas pressure, then gradually increase 表 3 模型流體參數
Table 3. Model fluid parameters
Parameter Value Permeability coefficient, ks/(m·s?1) 1×10?5 Viscosity ratio 56 m 0.445 n 0.5 Air entry value /Pa 1500 Saturation 0.4 Residual saturation 0.01 Gas density /(kg·m?3) 1.25 Water density /(kg·m?3) 1000 啪啪啪视频 -
參考文獻
[1] Qiu Q W. Study on Moisture-Gas Coupled Flow Inloess/Gravel Final Cover and Control of Landfill Gas Emission [Dissertation]. Zhejiang: Zhejiang University, 2016邱清文. 黃土/碎石覆蓋層水氣耦合運移規律及填埋氣減排性能[學位論文]. 浙江:浙江大學, 2016 [2] Wu T. Study on the Methane Emission Reduction Performance and Coupled Moisture-Gas-Heat Reactive Transfer in Capillary Barrier Cover [Dissertation]. Zhejiang: Zhejiang University, 2020吳濤. 毛細阻滯型覆蓋層水氣熱耦合運移機理及甲烷減排性能[學位論文]. 浙江:浙江大學, 2020 [3] Martin J W, Stark T D, Thalhamer T, et al. Detection of aluminum waste reactions and waste fires. J Hazard Toxic Radioact Waste, 2013, 17(3): 164 doi: 10.1061/(ASCE)HZ.2153-5515.0000171 [4] Liu X D, Shi J Y, Qian X D, et al. Biodegradation behavior of municipal solid waste with liquid aspects: Experiment and verification. J Environ Eng, 2013, 139(12): 1488 doi: 10.1061/(ASCE)EE.1943-7870.0000750 [5] Ma P C, Ke H, Lan J W, et al. Field measurement of pore pressures and liquid-gas distribution using drilling and ERT in a high food waste content MSW landfill in Guangzhou, China. Eng Geol, 2019, 250: 21 doi: 10.1016/j.enggeo.2019.01.004 [6] Reddy K R, Kulkarni H S, Khire M V. Two-phase modeling of leachate recirculation using vertical wells in bioreactor landfills. J Hazard Toxic Radioact Waste, 2013, 17(4): 272 doi: 10.1061/(ASCE)HZ.2153-5515.0000180 [7] Pan Y L, Jian W X, Li L J, et al. A study on the rainfall infiltration of granite residual soil slope with improved Green-Ampt model. Rock Soil Mech, 2020, 41(8): 2685潘永亮, 簡文星, 李林均, 等. 基于改進Green-Ampt模型的花崗巖殘積土邊坡降雨入滲規律研究. 巖土力學, 2020, 41(8):2685 [8] Yao M H, Chen T L, Fan R, et al. Slope stability considering the effects of air pressure and seepage under heavy rainfall conditions. J Shanghai Jiaotong Univ, 2022, 56(6): 739 doi: 10.16183/j.cnki.jsjtu.2021.302姚茂宏, 陳鐵林, 樊容, 等. 強降雨條件下考慮氣壓和滲流作用的邊坡穩定性. 上海交通大學學報, 2022, 56(6):739 doi: 10.16183/j.cnki.jsjtu.2021.302 [9] Zhang Z Y, Wang Y X, Fang Y H, et al. Global study on slope instability modes based on 62 municipal solid waste landfills. Waste Manag Res, 2020, 38(12): 1389 doi: 10.1177/0734242X20953486 [10] Liu W, Yan S X, He S M. Landslide damage incurred to buildings: A case study of Shenzhen landslide. Eng Geol, 2018, 247: 69 doi: 10.1016/j.enggeo.2018.10.025 [11] Ding Y L, Yue Z Q. Experimental study on the dynamic rupture of coal and rock caused by high pressure gas. J Geomech, 2021, 27(4): 643 doi: 10.12090/j.issn.1006-6616.2021.27.04.053丁言露, 岳中琦. 高壓氣體誘發煤巖動力破壞的實驗研究. 地質力學學報, 2021, 27(4):643 doi: 10.12090/j.issn.1006-6616.2021.27.04.053 [12] Yue Z Q. Cause and mechanism of highly compressed and dense methane gas mass for Wenchuan earthquake and associated rock-avalanches and surface co-seismic ruptures. Earth Sci Front, 2013, 20(6): 15岳中琦. 汶川地震與山崩地裂的極高壓甲烷天然氣成因和機理. 地學前緣, 2013, 20(6):15 [13] Townsend T G, Wise W R, Jain P. One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. J Environ Eng, 2005, 131(12): 1716 doi: 10.1061/(ASCE)0733-9372(2005)131:12(1716) [14] Li Y C, Zheng J, Chen Y M, et al. One-dimensional transient analytical solution for gas pressure in municipal solid waste landfills. J Environ Eng, 2013, 139(12): 1441 doi: 10.1061/(ASCE)EE.1943-7870.0000759 [15] Merry S M, Fritz W U, Budhu M, et al. Effect of gas on pore pressures in wet landfills. J Geotech Geoenviron Eng, 2006, 132(5): 553 doi: 10.1061/(ASCE)1090-0241(2006)132:5(553) [16] Shu S, Li Y P, Sun Z M, et al. Effect of gas pressure on municipal solid waste landfill slope stability. Waste Manag Res, 2022, 40(3): 323 doi: 10.1177/0734242X211001414 [17] Wei H Y, Zhan L T, Chen Y M. Study on gas migration around vertical extraction wells in municipal solid waste landfills. Acta Sci Circumstantiae, 2013, 33(5): 1306 doi: 10.13671/j.hjkxxb.2013.05.015魏海云, 詹良通, 陳云敏. 垃圾填埋場抽氣豎井周邊氣體運移規律研究. 環境科學學報, 2013, 33(5):1306 doi: 10.13671/j.hjkxxb.2013.05.015 [18] Wei H Y, Zhan L T, Chen Y M, et al. Experimental study on soil water characteristic curve of municipal solid waste. Chin J Geotech Eng, 2007, 29(5): 712 doi: 10.3321/j.issn:1000-4548.2007.05.013魏海云, 詹良通, 陳云敏, 等. 城市生活垃圾持水曲線的試驗研究. 巖土工程學報, 2007, 29(5):712 doi: 10.3321/j.issn:1000-4548.2007.05.013 [19] Wei H Y, Zhan L T, Chen Y M. Experimental study on gas permeability of municipal solid waste. Chin J Rock Mech Eng, 2007, 26(7): 1408 doi: 10.3321/j.issn:1000-6915.2007.07.014魏海云, 詹良通, 陳云敏. 城市生活垃圾的氣體滲透性試驗研究. 巖石力學與工程學報, 2007, 26(7):1408 doi: 10.3321/j.issn:1000-6915.2007.07.014 [20] Shi J Y, Zhao Y. Influence of air pressure and void on permeability coefficient of air in municipal solid waste(MSW). Chin J Geotech Eng, 2015, 37(4): 586 doi: 10.11779/CJGE201504002施建勇, 趙義. 氣體壓力和孔隙對垃圾土體氣體滲透系數影響的研究. 巖土工程學報, 2015, 37(4):586 doi: 10.11779/CJGE201504002 [21] Zhang D W, Liu S Y, Gu C Y, et al. Model tests on pneumatic fracturing in soils. Chin J Geotech Eng, 2009, 31(12): 1925 doi: 10.3321/j.issn:1000-4548.2009.12.019章定文, 劉松玉, 顧沉穎, 等. 土體氣壓劈裂的室內模型試驗. 巖土工程學報, 2009, 31(12):1925 doi: 10.3321/j.issn:1000-4548.2009.12.019 [22] Han W J, Liu S Y, Zhang D W. Characteristics and influencing factors analysis of propagation of pneumatic fracturing in soils. China Civ Eng J, 2011, 44(9): 87 doi: 10.15951/j.tmgcxb.2011.09.001韓文君, 劉松玉, 章定文. 土體氣壓劈裂裂隙擴展特性及影響因素分析. 土木工程學報, 2011, 44(9):87 doi: 10.15951/j.tmgcxb.2011.09.001 [23] Liu J J, Chen T L, Yao M H, et al. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum. J Zhejiang Univ (Eng Sci), 2020, 54(9): 1715劉晶晶, 陳鐵林, 姚茂宏, 等. 砂層盾構隧道泥水劈裂試驗與數值研究. 浙江大學學報(工學版), 2020, 54(9):1715 [24] Wang R X. Research on Propagation Characteristics of Fracture Grouting in Clay Formation [Dissertation]. Beijing: Beijing Jiaotong University, 2020王榮鑫. 黏土地層劈裂注漿擴散特性研究[學位論文]. 北京:北京交通大學, 2020 [25] Chen Z Y, Zhou J X, Wang H J. Soil Mechanics. Beijing: Tsinghua University Press, 1994陳仲頤, 周景星, 王洪瑾. 土力學. 北京:清華大學出版社, 1994 [26] Wang K, Diao X H, Lai J Y, et al. Engineering application comparison of strain softening model and Mohr-Columb model in FLAC3D. China Sci, 2015, 10(1): 55 doi: 10.3969/j.issn.2095-2783.2015.01.013王凱, 刁心宏, 賴建英, 等. FLAC3D應變軟化與摩爾庫倫模型工程應用對比. 中國科技論文, 2015, 10(1):55 doi: 10.3969/j.issn.2095-2783.2015.01.013 [27] Cho S E. Stability analysis of unsaturated soil slopes considering water-air flow caused by rainfall infiltration. Eng Geol, 2016, 211: 184 doi: 10.1016/j.enggeo.2016.07.008 [28] Vanapalli S K, Fredlund D G, Pufahl D E, et al. Model for the prediction of shear strength with respect to soil suction. Can Geotech J, 1996, 33(3): 379 doi: 10.1139/t96-060 -