• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
    • 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    氣壓誘發非飽和土變形破壞的試驗與數值研究

    姚茂宏 陳鐵林 朱鵬程 李曼 郭淞 劉長寶

    姚茂宏, 陳鐵林, 朱鵬程, 李曼, 郭淞, 劉長寶. 氣壓誘發非飽和土變形破壞的試驗與數值研究[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.11.06.001
    引用本文: 姚茂宏, 陳鐵林, 朱鵬程, 李曼, 郭淞, 劉長寶. 氣壓誘發非飽和土變形破壞的試驗與數值研究[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.11.06.001
    YAO Maohong, CHEN Tielin, ZHU Pengcheng, LI Man, GUO Song, LIU Changbao. Experimental and numerical studies on gas pressure–induced deformation and failure of unsaturated soil[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.06.001
    Citation: YAO Maohong, CHEN Tielin, ZHU Pengcheng, LI Man, GUO Song, LIU Changbao. Experimental and numerical studies on gas pressure–induced deformation and failure of unsaturated soil[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.06.001

    氣壓誘發非飽和土變形破壞的試驗與數值研究

    doi: 10.13374/j.issn2095-9389.2022.11.06.001
    基金項目: 中國國家鐵路集團有限公司科技研究開發計劃重大課題(K2019G042); 中央高校基本科研業務費專項資金資助項目(2021YJS114)
    詳細信息
      通訊作者:

      E-mail: tlchen1@bjtu.edu.cn

    • 中圖分類號: TU43

    Experimental and numerical studies on gas pressure–induced deformation and failure of unsaturated soil

    More Information
    • 摘要: 覆土填埋是處理城市垃圾的主要手段之一,但垃圾中的有機質在降解時會生成大量氣體,若產氣速率過快或導排不順,內部將產生過高的氣壓,導致土質覆蓋層發生變形破壞,進而影響填埋場的穩定性. 基于此,開展氣壓誘導非飽和土破壞的二維模型試驗和數值模擬,研究不同土體厚度、氣壓條件下的土體變形破壞機制. 結果表明,氣壓誘發土體破壞的過程可分為水氣運移、局部微裂縫、貫穿主裂縫和內部空洞四個階段. 土體破環主要發生在充氣孔上方與表層之間的倒三角區域內,其破壞形態根據是否有前期氣壓作用可分為“劈裂型”與“爆裂型”兩種. 土體的破壞壓力隨覆土厚度的增加近似線性增大,適當的氣壓有利于增加土體的穩定性,在此基礎上提出臨界穩定氣壓的概念. 通過提出的數值模擬方法研究了土體內部的滲流變化規律,發現氣壓會增加土體內部的孔隙壓力,同時會驅使水向四周擴散,導致周圍土體的飽和度發生變化;最后,研究結果表明有效應力增量的區域性變化可能是臨界穩定氣壓產生的原因,可為實際工程提供參考.

       

    • 圖  1  模型試驗裝置. (a) 試驗裝置示意圖; (b) 試驗裝置實物圖

      Figure  1.  Model test device: (a) schematic of the test device; (b) physical diagram of the test device

      圖  2  模型試驗材料

      Figure  2.  Model test materials

      圖  3  模型試驗破壞過程. (a) 水氣運移; (b)微裂縫產生; (c)主裂縫產生; (d)內部空洞

      Figure  3.  Failure process of the model test: (a) water and gas migration; (b) microcrack generation; (c) main cracks penetration; (d) internal cavity

      圖  4  模型破壞機理. (a) 劈裂擴展方向力學分析; (b) 土體破壞模式

      Figure  4.  Model failure mechanism: (a) mechanical analysis of splitting propagation direction; (b) soil failure mode

      圖  5  不同試驗條件下土體的最終破壞形態. (a) A組; (b) B組

      Figure  5.  Final failure mode of soil under different test conditions: (a) group A; (b) group B

      圖  6  A組試驗條件下的土體破壞壓力. (a)破壞氣壓; (b)破壞應力比

      Figure  6.  Soil failure pressure under the group A test conditions: (a) failure gas pressure; (b) failure stress ratio

      圖  7  B組試驗條件下的土體破壞壓力

      Figure  7.  Soil failure pressure under the group B test conditions

      圖  8  數值模型示意圖

      Figure  8.  Schematic of the numerical model

      圖  9  不同土層厚度條件下破壞壓力試驗值與模擬值

      Figure  9.  Test and simulation values of failure pressure under different soil layer thicknesses

      圖  10  不同土層厚度條件土體破壞形態數值結果

      Figure  10.  Numerical results of soil failure patterns under different soil thickness conditions

      圖  11  模型滲流場演化過程. (a)孔隙水壓力; (b)孔隙氣壓力; (c)飽和度

      Figure  11.  Evolution of model pore pressure: (a) pore water pressure; (b) pore gas pressure; (c) saturation

      圖  12  監測點處的壓力變化規律. (a) 孔隙氣壓力;(b) 孔隙水壓力

      Figure  12.  Variation in the pressure at monitoring points: (a) pore gas pressure; (b) pore water pressure

      圖  13  監測點處的飽和度變化規律

      Figure  13.  Variation in the saturation change law at monitoring points

      圖  14  觀察區內的有效應力增量對比

      Figure  14.  Comparison of effective stress increment in the observation area

      表  1  土體材料參數

      Table  1.   Soil material parameters

      Parameter Value
      Bulk modulus /Pa 1.33×107
      Shear modulus /Pa 8×106
      Porosity 0.4
      Soil density /(kg·m?3) 1600
      Cohesion /Pa 0
      Friction angle / (°) 31.88
      下載: 導出CSV

      表  2  模型試驗方案

      Table  2.   Model test scheme

      Test groups Number d/cm Loading form of gas pressure

      A
      110Gradually increase
      215Gradually increase
      320Gradually increase



      B
      420After 20 minutes of 10 kPa gas pressure, then gradually increase
      520After 20 minutes of 20 kPa gas pressure, then gradually increase
      620After 20 minutes of 30 kPa gas pressure, then gradually increase
      720After 20 minutes of 40 kPa gas pressure, then gradually increase
      820After 20 minutes of 50 kPa gas pressure, then gradually increase
      920After 20 minutes of 60 kPa gas pressure, then gradually increase
      下載: 導出CSV

      表  3  模型流體參數

      Table  3.   Model fluid parameters

      Parameter Value
      Permeability coefficient, ks/(m·s?1) 1×10?5
      Viscosity ratio 56
      m 0.445
      n 0.5
      Air entry value /Pa 1500
      Saturation 0.4
      Residual saturation 0.01
      Gas density /(kg·m?3) 1.25
      Water density /(kg·m?3) 1000
      下載: 導出CSV
    • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <table id="y4y0w"><option id="y4y0w"></option></table>
    • <li id="y4y0w"></li>
      <noscript id="y4y0w"></noscript>
      <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
      <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <menu id="y4y0w"></menu>
      <table id="y4y0w"><rt id="y4y0w"></rt></table>
    啪啪啪视频
  • [1] Qiu Q W. Study on Moisture-Gas Coupled Flow Inloess/Gravel Final Cover and Control of Landfill Gas Emission [Dissertation]. Zhejiang: Zhejiang University, 2016

    邱清文. 黃土/碎石覆蓋層水氣耦合運移規律及填埋氣減排性能[學位論文]. 浙江:浙江大學, 2016
    [2] Wu T. Study on the Methane Emission Reduction Performance and Coupled Moisture-Gas-Heat Reactive Transfer in Capillary Barrier Cover [Dissertation]. Zhejiang: Zhejiang University, 2020

    吳濤. 毛細阻滯型覆蓋層水氣熱耦合運移機理及甲烷減排性能[學位論文]. 浙江:浙江大學, 2020
    [3] Martin J W, Stark T D, Thalhamer T, et al. Detection of aluminum waste reactions and waste fires. J Hazard Toxic Radioact Waste, 2013, 17(3): 164 doi: 10.1061/(ASCE)HZ.2153-5515.0000171
    [4] Liu X D, Shi J Y, Qian X D, et al. Biodegradation behavior of municipal solid waste with liquid aspects: Experiment and verification. J Environ Eng, 2013, 139(12): 1488 doi: 10.1061/(ASCE)EE.1943-7870.0000750
    [5] Ma P C, Ke H, Lan J W, et al. Field measurement of pore pressures and liquid-gas distribution using drilling and ERT in a high food waste content MSW landfill in Guangzhou, China. Eng Geol, 2019, 250: 21 doi: 10.1016/j.enggeo.2019.01.004
    [6] Reddy K R, Kulkarni H S, Khire M V. Two-phase modeling of leachate recirculation using vertical wells in bioreactor landfills. J Hazard Toxic Radioact Waste, 2013, 17(4): 272 doi: 10.1061/(ASCE)HZ.2153-5515.0000180
    [7] Pan Y L, Jian W X, Li L J, et al. A study on the rainfall infiltration of granite residual soil slope with improved Green-Ampt model. Rock Soil Mech, 2020, 41(8): 2685

    潘永亮, 簡文星, 李林均, 等. 基于改進Green-Ampt模型的花崗巖殘積土邊坡降雨入滲規律研究. 巖土力學, 2020, 41(8):2685
    [8] Yao M H, Chen T L, Fan R, et al. Slope stability considering the effects of air pressure and seepage under heavy rainfall conditions. J Shanghai Jiaotong Univ, 2022, 56(6): 739 doi: 10.16183/j.cnki.jsjtu.2021.302

    姚茂宏, 陳鐵林, 樊容, 等. 強降雨條件下考慮氣壓和滲流作用的邊坡穩定性. 上海交通大學學報, 2022, 56(6):739 doi: 10.16183/j.cnki.jsjtu.2021.302
    [9] Zhang Z Y, Wang Y X, Fang Y H, et al. Global study on slope instability modes based on 62 municipal solid waste landfills. Waste Manag Res, 2020, 38(12): 1389 doi: 10.1177/0734242X20953486
    [10] Liu W, Yan S X, He S M. Landslide damage incurred to buildings: A case study of Shenzhen landslide. Eng Geol, 2018, 247: 69 doi: 10.1016/j.enggeo.2018.10.025
    [11] Ding Y L, Yue Z Q. Experimental study on the dynamic rupture of coal and rock caused by high pressure gas. J Geomech, 2021, 27(4): 643 doi: 10.12090/j.issn.1006-6616.2021.27.04.053

    丁言露, 岳中琦. 高壓氣體誘發煤巖動力破壞的實驗研究. 地質力學學報, 2021, 27(4):643 doi: 10.12090/j.issn.1006-6616.2021.27.04.053
    [12] Yue Z Q. Cause and mechanism of highly compressed and dense methane gas mass for Wenchuan earthquake and associated rock-avalanches and surface co-seismic ruptures. Earth Sci Front, 2013, 20(6): 15

    岳中琦. 汶川地震與山崩地裂的極高壓甲烷天然氣成因和機理. 地學前緣, 2013, 20(6):15
    [13] Townsend T G, Wise W R, Jain P. One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills. J Environ Eng, 2005, 131(12): 1716 doi: 10.1061/(ASCE)0733-9372(2005)131:12(1716)
    [14] Li Y C, Zheng J, Chen Y M, et al. One-dimensional transient analytical solution for gas pressure in municipal solid waste landfills. J Environ Eng, 2013, 139(12): 1441 doi: 10.1061/(ASCE)EE.1943-7870.0000759
    [15] Merry S M, Fritz W U, Budhu M, et al. Effect of gas on pore pressures in wet landfills. J Geotech Geoenviron Eng, 2006, 132(5): 553 doi: 10.1061/(ASCE)1090-0241(2006)132:5(553)
    [16] Shu S, Li Y P, Sun Z M, et al. Effect of gas pressure on municipal solid waste landfill slope stability. Waste Manag Res, 2022, 40(3): 323 doi: 10.1177/0734242X211001414
    [17] Wei H Y, Zhan L T, Chen Y M. Study on gas migration around vertical extraction wells in municipal solid waste landfills. Acta Sci Circumstantiae, 2013, 33(5): 1306 doi: 10.13671/j.hjkxxb.2013.05.015

    魏海云, 詹良通, 陳云敏. 垃圾填埋場抽氣豎井周邊氣體運移規律研究. 環境科學學報, 2013, 33(5):1306 doi: 10.13671/j.hjkxxb.2013.05.015
    [18] Wei H Y, Zhan L T, Chen Y M, et al. Experimental study on soil water characteristic curve of municipal solid waste. Chin J Geotech Eng, 2007, 29(5): 712 doi: 10.3321/j.issn:1000-4548.2007.05.013

    魏海云, 詹良通, 陳云敏, 等. 城市生活垃圾持水曲線的試驗研究. 巖土工程學報, 2007, 29(5):712 doi: 10.3321/j.issn:1000-4548.2007.05.013
    [19] Wei H Y, Zhan L T, Chen Y M. Experimental study on gas permeability of municipal solid waste. Chin J Rock Mech Eng, 2007, 26(7): 1408 doi: 10.3321/j.issn:1000-6915.2007.07.014

    魏海云, 詹良通, 陳云敏. 城市生活垃圾的氣體滲透性試驗研究. 巖石力學與工程學報, 2007, 26(7):1408 doi: 10.3321/j.issn:1000-6915.2007.07.014
    [20] Shi J Y, Zhao Y. Influence of air pressure and void on permeability coefficient of air in municipal solid waste(MSW). Chin J Geotech Eng, 2015, 37(4): 586 doi: 10.11779/CJGE201504002

    施建勇, 趙義. 氣體壓力和孔隙對垃圾土體氣體滲透系數影響的研究. 巖土工程學報, 2015, 37(4):586 doi: 10.11779/CJGE201504002
    [21] Zhang D W, Liu S Y, Gu C Y, et al. Model tests on pneumatic fracturing in soils. Chin J Geotech Eng, 2009, 31(12): 1925 doi: 10.3321/j.issn:1000-4548.2009.12.019

    章定文, 劉松玉, 顧沉穎, 等. 土體氣壓劈裂的室內模型試驗. 巖土工程學報, 2009, 31(12):1925 doi: 10.3321/j.issn:1000-4548.2009.12.019
    [22] Han W J, Liu S Y, Zhang D W. Characteristics and influencing factors analysis of propagation of pneumatic fracturing in soils. China Civ Eng J, 2011, 44(9): 87 doi: 10.15951/j.tmgcxb.2011.09.001

    韓文君, 劉松玉, 章定文. 土體氣壓劈裂裂隙擴展特性及影響因素分析. 土木工程學報, 2011, 44(9):87 doi: 10.15951/j.tmgcxb.2011.09.001
    [23] Liu J J, Chen T L, Yao M H, et al. Experimental and numerical study on slurry fracturing of shield tunnels in sandy stratum. J Zhejiang Univ (Eng Sci), 2020, 54(9): 1715

    劉晶晶, 陳鐵林, 姚茂宏, 等. 砂層盾構隧道泥水劈裂試驗與數值研究. 浙江大學學報(工學版), 2020, 54(9):1715
    [24] Wang R X. Research on Propagation Characteristics of Fracture Grouting in Clay Formation [Dissertation]. Beijing: Beijing Jiaotong University, 2020

    王榮鑫. 黏土地層劈裂注漿擴散特性研究[學位論文]. 北京:北京交通大學, 2020
    [25] Chen Z Y, Zhou J X, Wang H J. Soil Mechanics. Beijing: Tsinghua University Press, 1994

    陳仲頤, 周景星, 王洪瑾. 土力學. 北京:清華大學出版社, 1994
    [26] Wang K, Diao X H, Lai J Y, et al. Engineering application comparison of strain softening model and Mohr-Columb model in FLAC3D. China Sci, 2015, 10(1): 55 doi: 10.3969/j.issn.2095-2783.2015.01.013

    王凱, 刁心宏, 賴建英, 等. FLAC3D應變軟化與摩爾庫倫模型工程應用對比. 中國科技論文, 2015, 10(1):55 doi: 10.3969/j.issn.2095-2783.2015.01.013
    [27] Cho S E. Stability analysis of unsaturated soil slopes considering water-air flow caused by rainfall infiltration. Eng Geol, 2016, 211: 184 doi: 10.1016/j.enggeo.2016.07.008
    [28] Vanapalli S K, Fredlund D G, Pufahl D E, et al. Model for the prediction of shear strength with respect to soil suction. Can Geotech J, 1996, 33(3): 379 doi: 10.1139/t96-060
  • 加載中
  • 圖(14) / 表(3)
    計量
    • 文章訪問數:  197
    • HTML全文瀏覽量:  22
    • PDF下載量:  27
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-11-06
    • 網絡出版日期:  2023-04-04

    目錄

      /

      返回文章
      返回