• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
    • 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于雙插補軌跡控制的七關節機械臂避障

    任金超 李佳昌 王平江 魏鵬 張小晗

    任金超, 李佳昌, 王平江, 魏鵬, 張小晗. 基于雙插補軌跡控制的七關節機械臂避障[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.11.03.001
    引用本文: 任金超, 李佳昌, 王平江, 魏鵬, 張小晗. 基于雙插補軌跡控制的七關節機械臂避障[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.11.03.001
    REN Jinchao, LI Jiachang, WANG Pingjiang, WEI Peng, ZHANG Xiaohan. Obstacle avoidance of a seven-joint manipulator based on double interpolation trajectory control[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.03.001
    Citation: REN Jinchao, LI Jiachang, WANG Pingjiang, WEI Peng, ZHANG Xiaohan. Obstacle avoidance of a seven-joint manipulator based on double interpolation trajectory control[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.11.03.001

    基于雙插補軌跡控制的七關節機械臂避障

    doi: 10.13374/j.issn2095-9389.2022.11.03.001
    基金項目: 泉州市科技計劃資助項目(2020CT005)
    詳細信息
      通訊作者:

      E-mail: pj_wang@hust.edu.cn

    • 中圖分類號: TP242.2

    Obstacle avoidance of a seven-joint manipulator based on double interpolation trajectory control

    More Information
    • 摘要: 基于七關節機械臂的解析解提出了一種新的基于雙插補的機械臂軌跡控制算法,該方法利用給定的機械臂腕部關節中心點的位置向量推導出該位置向量在軌跡規劃器TP中的插補運算方程,并依據腕部中心點位置向量得到第七關節自運動的旋角,將每個插補周期插補出的旋角值附加到已通過解析解計算出的逆解關節向量的第七關節角度值上,從而達到關節軌跡控制的目的. 此外還可以通過通用的梯度投影法計算出一組關節角度值作為參考來進行解析解選解,從而達到避免奇異點的影響的效果. 該方法基于改造后的七關節機械臂構型在LinuxCNC實時控制平臺和matlab仿真平臺上都進行了實驗,并以機械臂的末端精度作為衡量指標,驗證了該方法對機械臂關節軌跡控制的有效性,也體現了其相比于梯度投影法等常用算法末端精度大幅提升的誤差控制優越性.

       

    • 圖  1  七關節機械臂仿真模型及關節結構圖像. (a) 仿真模型; (b) 簡化的關節結構圖

      Figure  1.  Simulation model and joint structure image of a seven-joint manipulator: (a) simulation model; (b) simplified joint structure diagram

      圖  2  機械臂各連桿坐標系

      Figure  2.  Coordinate system of each link of the manipulator

      圖  3  機械臂連桿結構示意圖

      Figure  3.  Schematic of the link structure of the manipulator

      圖  4  機械臂的冗余運動

      Figure  4.  Redundant motion of the robotic arm

      圖  5  機械臂從初始位姿運動到目標位姿. (a)初始位姿;(b)目標位姿

      Figure  5.  Robotic arm from the initial pose to the target pose: (a) initial pose; (b) target pose

      圖  6  分解成兩個自運動的示意圖及其對應的節點向量圖. (a)簡化機械臂分解成兩個自運動示意圖;(b)節點向量圖

      Figure  6.  Schematic of decomposition into two self-motions and their corresponding node vector diagrams: (a) schematic of the simplified robotic arm decomposition into two self-motions; (b) node vector diagram

      圖  7  關節連桿軌跡控制算法流程圖

      Figure  7.  Flowchart of the joint-link trajectory control algorithm

      圖  8  采用關節連桿軌跡控制算法前后的機械臂運動軌跡圖.(a)未用關節連桿軌跡控制算法的機械臂運動軌跡圖;(b)采用關節連桿軌跡控制算法的機械臂運動軌跡圖

      Figure  8.  Motion trajectories of the manipulator before and after using the joint-link trajectory control algorithm: (a) motion trajectory of the manipulator without the joint-link trajectory control algorithm; (b) motion trajectory of the manipulator with the joint-link trajectory control algorithm

      圖  9  分別使用梯度投影法和關節連桿軌跡控制算法的機械臂末端誤差圖.(a)使用梯度投影法的機械臂末端誤差圖;(b)使用軌跡控制算法的機械臂末端誤差圖

      Figure  9.  Error diagrams of the end of the manipulator using the gradient projection method and the joint-link trajectory control algorithm: (a) error diagram of the end of the manipulator using the gradient projection method; (b) error diagram of manipulator end using the trajectory control algorithm

      圖  10  帶障礙物的機械臂三維仿真模型

      Figure  10.  3D simulation model of the robotic arm with obstacles

      圖  11  基于雙插補的關節連桿軌跡控制法效果圖. (a)三維仿真模型姿態;(b)實際機械臂構型

      Figure  11.  Effect diagram of the joint-link trajectory control method based on double interpolation: (a) pose of the 3D simulation model; (b) configuration of the actual manipulator

      表  1  機械臂D-H參數表

      Table  1.   D–H parameter table of the robotic arm

      Connecting rod coordinate
      system, i
      Joint angle, ${\theta _i}$ Link length, ${a_{i - 1}}$/mm Link torsion angle, ${\alpha _{i - 1}}$ Link offset, ${d_i}$/mm
      1 π/2 0 0 0
      2 ?π/2 0 ?π/2 0
      3 0 360 0 0
      4 0 90 ?π/2 376.5
      5 0 0 π/2 0
      6 0 0 ?π/2 192.5
      7 0 0 ?π/2 52
      下載: 導出CSV

      表  2  三種算法誤差對比表

      Table  2.   Error comparison table of three algorithms

      Track type Number of interpolation
      points
      Error Error reduction factor
      Gradient
      projection method
      Singular robustness inverse Trajectory control algorithm Compared to gradient projection method Compared to singular robustness inverse
      Straight trajectory 300 $ 3.774 \times {10^{ - 4}} $ $ 4.461 \times {10^{ - 4}} $ $6.878 \times {10^{ - 12}}$ $1.54 \times {10^{ - 8}}$ $1.82 \times {10^{ - 8}}$
      500 $ 5.316 \times {10^{ - 4}} $ $ 6.418 \times {10^{ - 4}} $ $1.143 \times {10^{ - 11}}$ $2.15 \times {10^{ - 8}}$ $1.78 \times {10^{ - 8}}$
      800 $6.37 \times {10^{ - 4}}$ $8.015 \times {10^{ - 4}}$ $1.825 \times {10^{ - 11}}$ $2.86 \times {10^{ - 8}}$ $2.28 \times {10^{ - 8}}$
      1000 $ 6.327 \times {10^{ - 4}} $ $ 8.289 \times {10^{ - 4}} $ $2.274 \times {10^{ - 11}}$ $3.59 \times {10^{ - 8}}$ $2.74 \times {10^{ - 8}}$
      Arc trajectory 300 $ 2.084 \times {10^{ - 2}} $ $ 2.159 \times {10^{ - 2}} $ $ 2.274 \times {10^{ - 13}} $ $1.09 \times {10^{ - 11}}$ $1.05 \times {10^{ - 11}}$
      500 $ 1.25 \times {10^{ - 2}} $ $ 1.295 \times {10^{ - 2}} $ $ 1.705 \times {10^{ - 13}} $ $1.36 \times {10^{ - 11}}$ $1.32 \times {10^{ - 11}}$
      800 $ 7.81 \times {10^{ - 3}} $ $ 8.095 \times {10^{ - 3}} $ $ 1.137 \times {10^{ - 13}} $ $1.46 \times {10^{ - 11}}$ $1.40 \times {10^{ - 11}}$
      1000 $ 6.248 \times {10^{ - 3}} $ $ 6.476 \times {10^{ - 3}} $ $ 5.684 \times {10^{ - 14}} $ $9.10 \times {10^{ - 12}}$ $8.78 \times {10^{ - 12}}$
      下載: 導出CSV
    • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <table id="y4y0w"><option id="y4y0w"></option></table>
    • <li id="y4y0w"></li>
      <noscript id="y4y0w"></noscript>
      <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
      <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <menu id="y4y0w"></menu>
      <table id="y4y0w"><rt id="y4y0w"></rt></table>
    啪啪啪视频
  • [1] Li P N. Research on the transformation and upgrading of Dongguan's traditional manufacturing industry under the background of Guangdong–Hong Kong–Macao–Greater Bay Area. Mark Manag Rev, 2020(1): 48

    李佩娜. 粵港澳大灣區背景下東莞市傳統制造業轉型升級研究. 現代營銷(經營版), 2020(1):48
    [2] Zhang Z. Research on intelligent development of industrial robots. Def Ind Convers China, 2022(18): 82 doi: 10.3969/j.issn.1008-5874.2022.18.043

    張崢. 工業機器人的智能化發展探究. 中國軍轉民, 2022(18):82 doi: 10.3969/j.issn.1008-5874.2022.18.043
    [3] Liu J H. On the development trend of industrial robots. J N Ind, 2022, 12(4): 190

    劉雋宏. 淺談工業機器人的發展趨勢. 新型工業化, 2022, 12(4):190
    [4] Yue X M, Zang S, Xu Z K, et al. Research on trajectory planning and servo control strategy for EDM milling based on 6-DOF series robots [J/OL]. J Mech Eng (2022-12-26) [2023-03-28]. http://kns.cnki.net/kcms/detail/11.2187.TH.20221222.1934.006.html

    岳曉明, 臧爍, 徐作珂, 等. 基于6自由度串聯機器人的電火花銑削加工軌跡規劃及伺服控制策略研究[J/OL]. 機械工程學報 (2022-12-26) [2023-03-28]. http://kns.cnki.net/kcms/detail/11.2187.TH.20221222.1934.006.html
    [5] Zhang Z J, Chen H, Zhou N, et al. Research on obstacle avoidance trajectory planning of bobac robot S-type obstacle based on LiDAR. J Liaoning Inst Sci Technol, 2023, 25(1): 10

    張志軍, 陳賀, 周娜, 等. 基于激光雷達的Bobac機器人S型障礙物避障軌跡規劃研究. 遼寧科技學院學報, 2023, 25(1):10
    [6] Zhou Z, Jiang X Y, Han J B. Research on coordinated polishing trajectory planning of dual robots based on three-dimensional point cloud. Intell Comput Appl, 2023, 13(1): 77 doi: 10.3969/j.issn.2095-2163.2023.01.014

    周震, 姜笑言, 韓家哺. 基于三維點云的雙機器人協作打磨軌跡規劃研究. 智能計算機與應用, 2023, 13(1):77 doi: 10.3969/j.issn.2095-2163.2023.01.014
    [7] Tian Y S, Li J X, Song F F, et al. Obstacle avoidance trajectory planning for hyper-redundant robots. J Shantou Univ (Nat Sci Ed), 2023, 38(1): 23

    田溢汕, 李佳軒, 宋峰峰, 等. 超冗余機器人避障軌跡規劃. 汕頭大學學報(自然科學版), 2023, 38(1):23
    [8] Huo F C, Chi J, Huang Z J, et al. Review of path planning for mobile robots. J Jilin Univ (Inf Sci Ed), 2018, 36(6): 639 doi: 10.3969/j.issn.1671-5896.2018.06.007

    霍鳳財, 遲金, 黃梓健, 等. 移動機器人路徑規劃算法綜述. 吉林大學學報(信息科學版), 2018, 36(6):639 doi: 10.3969/j.issn.1671-5896.2018.06.007
    [9] Wang C Y, Liu P, Qin H Z. Review on intelligent path planning algorithm of mobile robots. Transducer Microsyst Technol, 2018, 37(8): 5

    王春穎, 劉平, 秦洪政. 移動機器人的智能路徑規劃算法綜述. 傳感器與微系統, 2018, 37(8):5
    [10] Xu Z, Wang Q C, Jia G C. Multi-target trajectory optimization of manipulator based on NSGA-Ⅱ. Manuf Autom, 2023, 45(1): 180

    許哲, 王慶誠, 賈廣臣. 基于NSGA-Ⅱ算法的機械臂多目標軌跡優化. 制造業自動化, 2023, 45(1):180
    [11] Li W, Deng Z H, Ge J M, et al. Research progress of joint space trajectory planning for robots. Mach Des Manuf Eng, 2022, 51(10): 15

    李尉, 鄧朝暉, 葛吉民, 等. 機器人關節空間軌跡規劃研究進展. 機械設計與制造工程, 2022, 51(10):15
    [12] Guo P. Research on trajectory planning of industrial robot. N Technol N Prod China, 2022(19): 42 doi: 10.3969/j.issn.1673-9957.2022.19.014

    郭萍. 工業機器人軌跡規劃研究. 中國新技術新產品, 2022(19):42 doi: 10.3969/j.issn.1673-9957.2022.19.014
    [13] Yu H, Chen G, Ding F, et al. Kinematics modeling and trajectory planning of serial robots. J Nanjing Inst Technol (Nat Sci Ed), 2022, 20(1): 27

    于昊, 陳桂, 丁飛, 等. 串聯機器人運動學建模與軌跡規劃研究. 南京工程學院學報(自然科學版), 2022, 20(1):27
    [14] Chen Y, Zhang J X. Trajectory planning and simulation analysis of robot arm obstacle avoidance based on curve fitting. Modul Mach Tool Autom Manuf Tech, 2021(9): 162

    陳雨, 張晉軒. 曲線擬合的機械臂避障軌跡規劃及仿真分析. 組合機床與自動化加工技術, 2021(9):162
    [15] Wang H L, Xiang G F, Zhu Y Q, et al. Obstacle avoidance path planning of manipulator based on PS-RRT algorithm. Appl Res Comput, 2023, 40(1): 42 doi: 10.19734/j.issn.1001-3695.2022.06.0287

    王紅莉, 向國菲, 朱雨琪, 等. 基于PS-RRT算法的機械臂避障路徑規劃. 計算機應用研究, 2023, 40(1):42 doi: 10.19734/j.issn.1001-3695.2022.06.0287
    [16] Gao Q Y, Chen L. Real-time obstacle avoidance trajectory planning for redundant manipulators based on self-motion. Intell Comput Appl, 2022, 12(6): 116

    高其遠, 陳麗. 基于自運動的冗余機械臂實時避障軌跡規劃. 智能計算機與應用, 2022, 12(6):116
    [17] Luo G R. Simulation analysis of kinematics and trajectory planning control of seven-joint manipulator. J Beijing Polytech Coll, 2022, 21(2): 6

    羅國榮. 七關節機械臂運動學及軌跡規劃控制仿真分析. 北京工業職業技術學院學報, 2022, 21(2):6
    [18] Qiu P, Wang G, Zhao L, et al. Unmanned vehicle path planning based on structured road improved artificial potential field method. Mach Des Manuf, 2023(3): 291

    邱朋, 汪光, 趙理, 等. 采用改進人工勢場法的動態無人車路徑規劃. 機械設計與制造, 2023(3):291
    [19] Qiu B, Shan L, Chang L, et al. Collision avoidance path planning of dual manipulators based on bidirectional planning of improved artificial potential field method. J Jiangsu Univ Sci Technol (Nat Sci Ed), 2021, 35(5): 72

    邱博, 單梁, 常路, 等. 基于改進人工勢場法雙向規劃的雙機械臂避碰路徑規劃. 江蘇科技大學學報(自然科學版), 2021, 35(5):72
    [20] Oriolo G, Cefalo M, Vendittelli M. Repeatable motion planning for redundant robots over cyclic tasks. IEEE Trans Robot, 2017, 33(5): 1170 doi: 10.1109/TRO.2017.2715348
    [21] Guo X L. Trajectory planning and obstacle avoidance of manipulator based on Q-learning algorithm. Mach Tool Hydraul, 2021, 49(9): 57 doi: 10.3969/j.issn.1001-3881.2021.09.011

    郭新蘭. Q-learning算法下的機械臂軌跡規劃與避障行為研究. 機床與液壓, 2021, 49(9):57 doi: 10.3969/j.issn.1001-3881.2021.09.011
    [22] Zhang X Y, Liu Y Y. Path planning of obstacle avoidance for manipulators based on position cost A* algorithm. J Mach Des, 2021, 38(2): 108

    張許有, 劉有余. 基于位置代價A*算法的機械臂避障路徑規劃. 機械設計, 2021, 38(2):108
    [23] Vigoriti F, Ruggiero F, Lippiello V, et al. Control of redundant robot arms with null-space compliance and singularity-free orientation representation. Robot Auton Syst, 2018, 100: 186 doi: 10.1016/j.robot.2017.11.007
    [24] Li Y X, Wang G L, Zhang J H, et al. Obstacle avoidance algorithm for redundant robots based on collision feedback. J Tsinghua Univ (Sci Technol), 2022, 62(3): 408

    李亞昕, 王國磊, 張劍輝, 等. 基于碰撞反饋的冗余機器人避障規劃算法. 清華大學學報(自然科學版), 2022, 62(3):408
    [25] Liu X F, Xu X R, Zha W B, et al. A trajectory tracking algorithm of null space obstacle avoidance for end-effector of manipulators. Mech Sci Technol Aerosp Eng, 2021, 40(7): 1009 doi: 10.13433/j.cnki.1003-8728.20200457

    劉雪飛, 徐向榮, 查文斌, 等. 一種零空間避障的機械臂末端軌跡跟蹤算法. 機械科學與技術, 2021, 40(7):1009 doi: 10.13433/j.cnki.1003-8728.20200457
    [26] Zhang L D, Li L Y, Wang T Q. Improvement of obstacle avoidance algorithm for a redundant robot based on gradient projection method. Mech Sci Technol Aerosp Eng, 2015, 34(10): 1511 doi: 10.13433/j.cnki.1003-8728.2015.1007

    張立棟, 李亮玉, 王天琪. 冗余度機器人梯度投影避障算法的改進. 機械科學與技術, 2015, 34(10):1511 doi: 10.13433/j.cnki.1003-8728.2015.1007
    [27] Gong M D, Li X D, Zhang L. Analytical inverse kinematics and self-motion application for 7-DOF redundant manipulator. IEEE Access, 2019, 7: 18662 doi: 10.1109/ACCESS.2019.2895741
  • 加載中
  • 圖(11) / 表(2)
    計量
    • 文章訪問數:  246
    • HTML全文瀏覽量:  21
    • PDF下載量:  20
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-11-03
    • 網絡出版日期:  2023-03-28

    目錄

      /

      返回文章
      返回