• <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <table id="y4y0w"><option id="y4y0w"></option></table>
  • <li id="y4y0w"></li>
    <noscript id="y4y0w"></noscript>
    <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
    <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
    <menu id="y4y0w"></menu>
    <table id="y4y0w"><rt id="y4y0w"></rt></table>
    • 《工程索引》(EI)刊源期刊
    • 中文核心期刊
    • 中國科技論文統計源期刊
    • 中國科學引文數據庫來源期刊

    留言板

    尊敬的讀者、作者、審稿人, 關于本刊的投稿、審稿、編輯和出版的任何問題, 您可以本頁添加留言。我們將盡快給您答復。謝謝您的支持!

    姓名
    郵箱
    手機號碼
    標題
    留言內容
    驗證碼

    基于WOA-VMD與PSO-SVM的鋰離子電池內短路故障診斷方法

    王君瑞 吳新舉 趙東琦 王麗寶 代麗 白冰超

    王君瑞, 吳新舉, 趙東琦, 王麗寶, 代麗, 白冰超. 基于WOA-VMD與PSO-SVM的鋰離子電池內短路故障診斷方法[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.10.04.004
    引用本文: 王君瑞, 吳新舉, 趙東琦, 王麗寶, 代麗, 白冰超. 基于WOA-VMD與PSO-SVM的鋰離子電池內短路故障診斷方法[J]. 工程科學學報. doi: 10.13374/j.issn2095-9389.2022.10.04.004
    WANG Junrui, WU Xinju, ZHAO Dongqi, WANG Libao, DAI Li, BAI Bingchao. Research on internal short-circuit fault diagnosis methods for lithium-ion batteries based on WOA-VMD and PSO-SVM[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.04.004
    Citation: WANG Junrui, WU Xinju, ZHAO Dongqi, WANG Libao, DAI Li, BAI Bingchao. Research on internal short-circuit fault diagnosis methods for lithium-ion batteries based on WOA-VMD and PSO-SVM[J]. Chinese Journal of Engineering. doi: 10.13374/j.issn2095-9389.2022.10.04.004

    基于WOA-VMD與PSO-SVM的鋰離子電池內短路故障診斷方法

    doi: 10.13374/j.issn2095-9389.2022.10.04.004
    基金項目: 國家自然科學基金資助項目(52167004);寧夏回族自治區智能裝備與精密檢測技術研究應用創新團隊(2022BSB03104)
    詳細信息
      通訊作者:

      E-mail: jr09110111@163.com

    • 中圖分類號: TM912

    Research on internal short-circuit fault diagnosis methods for lithium-ion batteries based on WOA-VMD and PSO-SVM

    More Information
    • 摘要: 為了保證儲能電站和新能源汽車的安全運行,針對鋰離子電池內短路故障引發熱失控現象,提出了鯨魚優化算法優化變分模態分解(WOA-VMD)和粒子群算法優化支持向量機(PSO-SVM)的故障診斷方法. 首先通過WOA尋找VMD分解層數K和懲罰因子α最優參數組合,將鋰離子電池內短路故障信號與正常信號分解出多個模態分量;其次,計算各模態分量(IMF)的樣本熵值作為特征向量;最后將特征向量分別輸入至SVM故障診斷模型與PSO-SVM故障診斷模型中進行故障診斷. 結果表明,SVM故障診斷率66.667%,經PSO優化過的SVM故障診斷率為96.667%,鋰離子電池內短路故障得到了有效識別.

       

    • 圖  1  WOA-VMD流程圖

      Figure  1.  Flow chart of WOA-VMD

      圖  2  鋰電池內短路故障診斷流程圖

      Figure  2.  Flow chart of internal short-circuit fault diagnosis of lithium battery

      圖  3  鋰電池電壓信號.(a)鋰電池內短路電壓故障信號;(b)鋰電池正常電壓信號

      Figure  3.  Lithium battery voltage signal: (a) short-circuit voltage fault signal in lithium battery; (b) lithium battery normal voltage signal

      圖  4  WOA-VMD收斂曲線

      Figure  4.  Convergence curve of WOA-VMD

      圖  5  鋰電池故障信號VMD分解.(a)VMD分解;(b)VMD各分量對應頻譜

      Figure  5.  VMD decomposition of lithium battery fault signal: (a) VMD decomposition; (b) spectrum corresponding to each component of VMD

      圖  6  鋰電池故障信號EMD分解.(a)EMD分解;(b)EMD各分量對應頻譜

      Figure  6.  EMD decomposition of lithium battery fault signal: (a) EMD decomposition; (b) spectrum corresponding to each component of EMD

      圖  7  鋰電池故障信號EEMD分解.(a)EEMD分解;(b)EEMD各分量對應頻譜

      Figure  7.  EEMD decomposition of lithium battery fault signal: (a) EEMD decomposition; (b) spectrum corresponding to each component of EEMD

      圖  8  鋰電池故障與正常電壓的熵值分解對比

      Figure  8.  Comparison of entropy decomposition between lithium battery fault and normal voltage

      圖  9  SVM故障分類模型

      Figure  9.  SVM fault classification model

      圖  10  PSO-SVM故障分類模型

      Figure  10.  PSO-SVM fault classification model

      表  1  兩種狀態下特征向量及其識別效果

      Table  1.   Eigenvectors in two states and their recognition effects

      Battery statusFeature vectorTrue categoryForecast category
      IMF1IMF2IMF4IMF6IMF7IMF9
      Internal short-circuit fault0.00500.05590.10500.01510.00330.000611
      0.00610.05180.05020.00350.00010.000311
      0.00640.05950.03960.00590.00190.00211
      Normal0.00370.13080.06320.00180.00420.001122
      0.00320.02720.05710.009600.001122
      0.00320.05580.02410.00650.00160.000322
      下載: 導出CSV

      表  2  經粒子群算法優化前后的診斷結果

      Table  2.   Diagnosis results before and after PSO

      Fault diagnosis methodRecognition rate/%
      SVM66.667
      PSO-SVM96.667
      下載: 導出CSV
    • <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <table id="y4y0w"><option id="y4y0w"></option></table>
    • <li id="y4y0w"></li>
      <noscript id="y4y0w"></noscript>
      <noscript id="y4y0w"><kbd id="y4y0w"></kbd></noscript>
      <noscript id="y4y0w"><source id="y4y0w"></source></noscript>
      <menu id="y4y0w"></menu>
      <table id="y4y0w"><rt id="y4y0w"></rt></table>
    啪啪啪视频
  • [1] Li K X. Research on Thermal Characteristics and Thermal Management System of Electric Vehicle Power Battery [Dissertation]. Tianjin: Tianjin University, 2019

    李愷翔. 電動汽車動力電池熱特性及熱管理方式研究[學位論文]. 天津:天津大學, 2019
    [2] Ma R X, Liu J Z, Wang S F, et al. Progress on thermal runaway propagation characteristics and prevention strategies of lithium-ion batteries. Chin Sci Bull, 2021, 66(23): 2991 doi: 10.1360/TB-2020-1576

    馬瑞鑫, 劉吉臻, 汪雙鳳, 等. 鋰離子電池熱失控擴展特征及抑制策略研究進展. 科學通報, 2021, 66(23):2991 doi: 10.1360/TB-2020-1576
    [3] Long Y, Zhou X Z, Wang Z G, et al. Safety design of power Li-ion battery for rail transit vehicle. Battery Bimon, 2021, 51(6): 614

    龍源, 周興振, 王占國, 等. 軌道交通車輛用動力鋰離子電池的安全設計. 電池, 2021, 51(6):614
    [4] Sun Z Y, Wang Z P, Liu P, et al. Overview of fault diagnosis in new energy vehicle power battery system. J Mech Eng, 2021, 57(14): 87 doi: 10.3901/JME.2021.14.087

    孫振宇, 王震坡, 劉鵬, 等. 新能源汽車動力電池系統故障診斷研究綜述. 機械工程學報, 2021, 57(14):87 doi: 10.3901/JME.2021.14.087
    [5] Qin X W, Du H J, Li M M, et al. Energy storage system design for safety performance improvement. Power Energy, 2021, 42(5): 504

    秦曉維, 杜海江, 李明明, 等. 提升安全性能的儲能系統設計. 電力與能源, 2021, 42(5):504
    [6] Zhang C J, Shi M D, Xu C, et al. Intrinsic safety mechanism and case analysis of energy storage systems based on dynamically reconfigurable battery network. Energy Storage Sci Technol, 2022, 11(8): 2442

    張從佳, 施敏達, 徐晨, 等. 基于動態可重構電池網絡的儲能系統本質安全機制及實例分析. 儲能科學與技術, 2022, 11(8):2442
    [7] Liu H Y, Yang L, Li J L. Battery fault identification based on long-short-term memory networks. Mechatronics, 2020, 26(S1): 17

    劉宏陽, 楊林, 李濟霖. 基于長短期記憶網絡的電動汽車電池故障診斷. 機電一體化, 2020, 26(S1):17
    [8] Shan T X, Wang Z P, Hong J C, et al. Overview of “mechanical abuse-thermal runaway” of electric vehicle power battery and its safety prevention and control technology. J Mech Eng, 2022, 58(14): 252

    山彤欣, 王震坡, 洪吉超, 等. 新能源汽車動力電池“機械濫用–熱失控”及其安全防控技術綜述. 機械工程學報, 2022, 58(14):252
    [9] Yang R X, Xiong R, Sun F C. Experimental platform development and characteristics analysis of external short circuit in lithium-ion batteries. J Electr Eng, 2021, 16(1): 103

    楊瑞鑫, 熊瑞, 孫逢春. 鋰離子動力電池外部短路測試平臺開發與試驗分析. 電氣工程學報, 2021, 16(1):103
    [10] Su W, Zhong G B, Shen J N, et al. The progress in fault diagnosis techniques for lithium-ion batteries. Energy Storage Sci Technol, 2019, 8(2): 225

    蘇偉, 鐘國彬, 沈佳妮, 等. 鋰離子電池故障診斷技術進展. 儲能科學與技術, 2019, 8(2):225
    [11] Yang J, Lin Z K, Tang J, et al. A review of fault characteristics, fault diagnosis and identification for lithium-ion battery systems. CIESC J, 2022, 73(8): 3394

    楊靜, 林振康, 湯君, 等. 電池系統的故障特征以及多故障的診斷與識別. 化工學報, 2022, 73(8):3394
    [12] Zhu X Q, Wang Z P, Hsin W, et al. Review of thermal runaway and safety management for lithium-ion traction batteries in electric vehicles. J Mech Eng, 2020, 56(14): 91 doi: 10.3901/JME.2020.14.091

    朱曉慶, 王震坡, WANG Hsin, 等. 鋰離子動力電池熱失控與安全管理研究綜述. 機械工程學報, 2020, 56(14):91 doi: 10.3901/JME.2020.14.091
    [13] Wang Z F, Luo W, Yan Y, et al. Summary of research on multi-fault diagnosis strategies of lithium-ion power battery sensors. Sci Technol Eng, 2022, 22(27): 11761

    王志福, 羅崴, 閆愿, 等. 鋰離子動力電池傳感器多故障診斷策略綜述. 科學技術與工程, 2022, 22(27):11761
    [14] Chen Z Y, Xiong R, Tian J P, et al. Model-based fault diagnosis approach on external short circuit of lithium-ion battery used in electric vehicles. Appl Energy, 2016, 184: 365 doi: 10.1016/j.apenergy.2016.10.026
    [15] Feng X N, Pan Y, He X M, et al. Detecting the internal short circuit in large-format lithium-ion battery using model-based fault-diagnosis algorithm. J Energy Storage, 2018, 18: 26 doi: 10.1016/j.est.2018.04.020
    [16] Feng X N, Weng C H, Ouyang M G, et al. Online internal short circuit detection for a large format lithium ion battery. Appl Energy, 2016, 161: 168 doi: 10.1016/j.apenergy.2015.10.019
    [17] Zhang M X, Du J Y, Liu L S, et al. Internal short circuit detection method for battery pack based on circuit topology. Sci China Technol Sci, 2018, 61(10): 1502 doi: 10.1007/s11431-017-9299-3
    [18] Chen Z Q, Chen X D, Olivira J, et al. Application of deep learning in equipment prognostics and health management. Chin J Sci Instrum, 2019, 40(9): 206

    陳志強, 陳旭東, José Valente de Olivira, 等. 深度學習在設備故障預測與健康管理中的應用. 儀器儀表學報, 2019, 40(9):206
    [19] Wang C, Yuan Z Y, Wang Y W, et al. Overview of key technologies for echelon utilization of decommissioned power batteries. Adv N Renew Energy, 2021, 9(4): 327

    王存, 袁智勇, 王亦偉, 等. 退役動力電池梯次利用關鍵技術概述. 新能源進展, 2021, 9(4):327
    [20] Li T M, Si X S, Liu X, et al. Data-model interactive remaining useful life prediction technologies for stochastic degrading devices with big data. Acta Autom Sin, 2022, 48(9): 2119

    李天梅, 司小勝, 劉翔, 等. 大數據下數模聯動的隨機退化設備剩余壽命預測技術. 自動化學報, 2022, 48(9):2119
    [21] Jiang L L, Deng Z W, Tang X L, et al. Data-driven fault diagnosis and thermal runaway warning for battery packs using real-world vehicle data. Energy, 2021, 234: 121266 doi: 10.1016/j.energy.2021.121266
    [22] Xia B, Shang Y L, Nguyen T, et al. A correlation based fault detection method for short circuits in battery packs. J Power Sources, 2017, 337: 1 doi: 10.1016/j.jpowsour.2016.11.007
    [23] Naha A, Khandelwal A, Agarwal S, et al. Internal short circuit detection in Li-ion batteries using supervised machine learning. Sci Rep, 2020, 10: 1301 doi: 10.1038/s41598-020-58021-7
    [24] Liu Y H. Research on Power Forecasting and Dynamic Environmental Economic Dispatch in Power System with Photovoltaic Power Generation [Dissertation]. Harbin: Northeast Agricultural University, 2021

    劉彥輝. 含光伏發電的電力系統功率預測和動態環境經濟調度研究[學位論文]. 哈爾濱:東北農業大學, 2021
    [25] Wang R, Hou Q L, Shi R Y, et al. Remaining useful life prediction method of lithium battery based on variational mode decomposition and integrated deep model. Chin J Sci Instrum, 2021, 42(4): 111

    王冉, 后麒麟, 石如玉, 等. 基于變分模態分解與集成深度模型的鋰電池剩余壽命預測方法. 儀器儀表學報, 2021, 42(4):111
    [26] Yang B C. Whale Optimization Algorithm-Based Optimum Energy-Management and Battery-Sizing Method for Grid-Connected Microgrids [Dissertation]. Qinhuangdao: Yanshan University, 2020

    楊柏成. 基于鯨魚優化算法的微網能量管理與電池容量優化[學位論文]. 秦皇島:燕山大學, 2020
    [27] Wu Y X, Wang X Z, Cheng Y H, et al. Research on the method of extracting the fault features of walking gearbox of combine harvester. J Agric Mech Res, 2022, 44(2): 23

    吳又新, 王新忠, 承銀輝, 等. 聯合收割機行走變速箱故障特征提取方法研究. 農機化研究, 2022, 44(2):23
    [28] Zhai J Q, Yang X X, Cheng Y Q, et al. Overview of application of fault detection and diagnosis based on machine learning. Comput Meas Contr, 2021, 29(3): 1

    翟嘉琪, 楊希祥, 程玉強, 等. 機器學習在故障檢測與診斷領域應用綜述. 計算機測量與控制, 2021, 29(3):1
    [29] Zhang P, Zhang W H, Zhao X H, et al. Application of WOA-VMD algorithm in bearing fault diagnosis. Noise Vib Contr, 2021, 41(4): 86

    張萍, 張文海, 趙新賀, 等. WOA-VMD算法在軸承故障診斷中的應用. 噪聲與振動控制, 2021, 41(4):86
  • 加載中
  • 圖(10) / 表(2)
    計量
    • 文章訪問數:  5
    • HTML全文瀏覽量:  3
    • PDF下載量:  0
    • 被引次數: 0
    出版歷程
    • 收稿日期:  2022-11-04
    • 網絡出版日期:  2023-10-11

    目錄

      /

      返回文章
      返回